\qquad

1-2 Function Composition

Fluency

1. Given $f(x)=3 x-4$ and $g(x)=-2 x+7$ evaluate:
(a) $f(g(0))$
(b) $g(f(-2))$
(c) $f(f(3))$
(d) $(g \circ f)(6)$
(e) $(f \circ g)(5)$
(f) $(g \circ g)(2)$
2. Given $h(x)=x^{2}+11$ and $g(x)=\sqrt{x-2}$ evaluate:
(a) $h(g(18))$
(b) $g(h(4))$
(c) $(g \circ g)(11)$
(d) $h(h(0))$
(e) $(h \circ g)(38)$
(f) $(g \circ h)(0)$
3. The graphs of $y=h(x)$ and $y=k(x)$ are shown below. Evaluate the following based on these two graphs.

(a) $h(k(-2))$
(b) $(k \circ h)(0)$
(c) $h(h(-2))$
(d) $(k \circ k)(-2)$

4. If $g(x)=3 x-5$ and $h(x)=2 x-4$ then $(g \circ h)(x)=$?
(1) $6 x-17$
(3) $5 x-9$
(2) $6 x-14$
(4) $x-1$
5. If $f(x)=x^{2}+5$ and $g(x)=x+4$ then $f(g(x))=$
(1) $x^{2}+9$
(3) $4 x^{2}+20$
(2) $x^{2}+8 x+21$
(4) $x^{2}+21$

ApPLICATIONS

6. Scientists modeled the intensity of the sun, I, as a function of the number of hours since 6:00 a.m., h, using the function $I(h)=\frac{12 h-h^{2}}{36}$. They then model the temperature of the soil, T, as a function of the intensity using the function $T(I)=\sqrt{5000 I}$. Which of the following is closest to the temperature of the soil at 2:00 p.m. ?
(1) 54
(3) 67
(2) 84
(4) 38
7. Physics students are studying the effect of the temperature, T, on the speed of sound, S. They find that the speed of sound in meters per second is a function of the temperature in degrees Kelvin, K, by $S(K)=\sqrt{410 K}$. The degrees Kelvin is a function of the temperature in Celsius given by $K(C)=C+273.15$. Find the speed of sound when the temperature is 30 degrees Celsius. Round to the nearest tenth.

REASONING

8. Consider the functions $f(x)=2 x+9$ and $g(x)=\frac{x-9}{2}$. Calculate the following.
(a) $g(f(15))$
(b) $g(f(-3))$
(c) $g(f(x))$
(d) What appears to always be true when you compose these two functions?
