\qquad

2-1 QuAdratic Function Review

Fluency

1. Without the use of your calculator, evaluate each of the following quadratic functions for the specified input values.
(a) $g(x)=x^{2}-9$
(b) $f(x)=-2 x^{2}+8 x$
(c) $h(x)=x^{2}-2 x+6$
$f(3)=$
$h(0)=$
$f(-1)=$
$h(-2)=$
$g(5)=$
$g(-3)=$
(1) 7
(3) -7
(2) 2
(4) 9
2. Which of the following represents the y-intercept of the graph of the quadratic function $y=2 x^{2}-7 x+9$?
3. For a particular quadratic function, the leading coefficient is negative and the function has a turning point whose coordinates are $(-3,14)$. Which of the following must be the range of this quadratic?
(1) $\{y \mid y \geq-3\}$
(3) $\{y \mid y \leq 14\}$
(2) $\{y \mid y \leq-3\}$
(4) $\{y \mid y \geq 14\}$
4. A parabola has one x-intercept of $x=-2$ and an axis of symmetry of $x=4$. Which of the following represents its other x-intercept? (Hint, think of how far the given x-intercept is away from the axis.)
(1) $x=3$
(3) $x=6$
(2) $x=10$
(4) $x=8$
5. A quadratic function is shown in the table below Which of the following statements is not true about the function based on this table? Explain your choice.
(1) The function has an x intercept of 3 .
(2) The function has a y-intercept of -3 .
(3) The function's leading coefficient is negative.
(4) The function has a turning point of $(1,-4)$

x	$f(x)$
-1	0
0	-3
1	-4
2	-3
3	0
4	5
5	12

6. Consider the quadratic function whose equation is $f(x)=x^{2}+2 x-8$.
(a) Sketch a graph of f on the grid provided.
(b) Over what interval is f decreasing?
(c) Over what interval is $f(x)<0$?
(d) State the range of f.

APPLICATIONS - CALCULATOR ACTIVE

7. The number of meters above the ground, h, of a projectile fired at an initial velocity of 86 meters per second and at an initial height of 6.2 meters is given by $h(t)=-4.9 t^{2}+86 t+6.2$, where t represents the time, in seconds, since the projectile was fired. If the projectile hits its peak height at $t=8.775$ seconds, which of the following is closest to its greatest height?
(1) 265 meters
(3) 422 meters
(2) 384 meters
(4) 578 meters
8. Physics students were modeling the height of a ball once it was dropped from the roof of a 25 story building. The students found that the height in feet, h, of the ball above the ground as a function of the number of seconds, t, since it was dropped was given by $h(t)=300-16 t^{2}$.

From what height was the ball dropped?

To the nearest tenth of a second, determine the time at which the ball hits the ground. Provide evidence from a table to support your answer or solve this algebraically if you recall how to.

