Name: _

Date: _____

2-1 QUADRATIC FUNCTION REVIEW

FLUENCY

- 1. Without the use of your calculator, evaluate each of the following quadratic functions for the specified input values.
 - (a) $g(x) = x^2 9$ (b) $f(x) = -2x^2 + 8x$ (c) $h(x) = x^2 - 2x + 6$ g(5) = f(3) = h(0) =
 - g(-3) = f(-1) = h(-2) =
- 2. Which of the following represents the *y*-intercept of the graph of the quadratic function $y = 2x^2 7x + 9$?
 - (1) 7 (3) -7
 - (2) 2 (4) 9
- 3. For a particular quadratic function, the leading coefficient is *negative* and the function has a turning point whose coordinates are (-3, 14). Which of the following must be the *range* of this quadratic?
 - (1) $\{y \mid y \ge -3\}$ (3) $\{y \mid y \le 14\}$
 - (2) $\{y \mid y \le -3\}$ (4) $\{y \mid y \ge 14\}$
- 4. A parabola has one *x*-intercept of x = -2 and an axis of symmetry of x = 4. Which of the following represents its other *x*-intercept? (Hint, think of how far the given *x*-intercept is away from the axis.)
 - (1) x = 3 (3) x = 6
 - (2) x = 10 (4) x = 8
- 5. A quadratic function is shown in the table below Which of the following statements is *not* true about the function based on this table? Explain your choice. $r = \frac{f(x)}{r}$
 - (1) The function has an x intercept of 3.
 - (2) The function has a y-intercept of -3.
 - (3) The function's leading coefficient is negative.
 - (4) The function has a turning point of (1, -4)

x	f(x)
-1	0
0	-3
1	-4
2	-3
3	0
4	5
5	12

6. Consider the quadratic function whose equation is $f(x) = x^2 + 2x - 8$.

APPLICATIONS – CALCULATOR ACTIVE

- 7. The number of meters above the ground, *h*, of a projectile fired at an initial velocity of 86 meters per second and at an initial height of 6.2 meters is given by $h(t) = -4.9t^2 + 86t + 6.2$, where *t* represents the time, in seconds, since the projectile was fired. If the projectile hits its peak height at t = 8.775 seconds, which of the following is closest to its greatest height?
 - (1) 265 meters (3) 422 meters
 - (2) 384 meters (4) 578 meters
- 8. Physics students were modeling the height of a ball once it was dropped from the roof of a 25 story building. The students found that the height in feet, *h*, of the ball above the ground as a function of the number of seconds, *t*, since it was dropped was given by $h(t) = 300-16t^2$.

From what height was the ball dropped?

To the nearest *tenth* of a second, determine the time at which the ball hits the ground. Provide evidence from a table to support your answer or solve this algebraically if you recall how to.