\qquad

2-4 Horizontal Stretching of Functions

Fluency

1. The function $f(x)$ is shown graphed on the axes below with selected points highlighted. Two additional functions are defined as:
$g(x)=f(2 x)$ and $h(x)=2 f(x)$
Graph both $g(x)$ and $h(x)$ on the same grid and label them.

State the domain of $g(x)$ only:

3. Which of the following formulas would indicate that the graph of $h(x)$ was stretched in the horizontal direction by a factor of 3 ?
(1) $h(3 x)$
(3) $h(x)+3$
(2) $h\left(\frac{1}{3} x\right)$
(4) $3 h(x)$
4. The parabola $f(x)=x^{2}-16$ is shown graphed on the grid below with certain points highlighted. The function $g(x)$ is given by $g(x)=f(2 x)$.
(a) What is the range of the function $f(x)$?
(b) State the zeroes of $f(x)$.
(c) The function $g(x)$ will have the equation $g(x)=(2 x)^{2}-16$. Using your calculator, create a graph of $g(x)$ on the grid given.
(d) State the zeroes of $g(x)$. Why does this answer make sense in light of (b)?

REASONING

5. The function $f(x)$ is shown below. Another function is defined by the formula:

$$
g(x)=f(2 x)+3
$$

(a) Evaluate each of the following. Show your work.

$$
\begin{array}{ll}
g(-3)= & g(-1)= \\
g(2)= & g(3)=
\end{array}
$$

(b) Plot a graph of $g(x)$ based on (a).
(c) What two transformations occurred to the graph of $f(x)$ to produce the graph of $g(x)$? State them and their order.

