2-7 The Zero Product Law

Fluency

1. Solve each of the following equations for all value(s) of x.
(a) $(x-2)(x+5)=0$
(b) $(7 x-1)(2 x+5)=0$
(c) $(3 x-1)(3 x+1)=0$
2. Solve each of the following quadratic equations which have already been set equal to zero.
(a) $x^{2}+10 x+16=0$
(b) $3 x^{2}+11 x-4=0$
(c) $12 x^{2}+8 x=0$
3. Solve each of the following quadratic equations by first manipulating them so that one side of the equation is set equal to zero.
(a) $x^{2}+4 x-40=10 x+15$
(b) $4 x^{2}+3 x-11=3 x-2$
(c) $6 x^{2}-15 x+2=2 x^{2}+10 x-4$
(d) $-16 t^{2}+76 t+5=12 t+5$

ApPlications

4. Consider the system of equations shown below consisting of one linear and one quadratic equation. $y=4 x-5$ and $y=2 x^{2}-5 x-10$
(a) Find the intersection points of this system algebraically.
(b) Using your calculator, sketch a graph of this system to the right. Be sure to label the curves with equations, the intersection points, and the window.

5. Algebraically, find the zeroes (x-intercepts) of each quadratic function given below.
(a) $y=x^{2}-81$
(b) $y=12 x^{2}-18 x$
(c) $y=2 x^{2}-6 x-8$

Reasoning

6. A quadratic function of the form $y=x^{2}+b x+c$.
(a) What are the x-intercepts of this parabola?
(b) Based on your answer to part (a), write the equation of this quadratic function first in factored form and then in trinomial form.

