Name: _____

2-8 COMPLETING THE SQUARE

1. Each of the following trinomials is a perfect square. Write it in factored form, i.e. $(x+a)^2$ or $(x-a)^2$.

(a)
$$x^2 + 6x + 9$$
 (b) $x^2 - 22x + 121$ (c) $x^2 + 10x + 25$

(d)
$$x^2 + 30x + 225$$
 (e) $x^2 - 2x + 1$ (f) $x^2 - 18x + 81$

- 2. Place each of the following quadratic functions, written in standard form, into vertex form by completing the square. Then, identify the coordinates of its turning point.
 - (a) $y = x^2 12x + 40$ (b) $y = x^2 + 4x + 14$ (c) $y = x^2 24x + 146$

3. Use the method completing the square to write each of the following quadratic functions in the form $y = a(x-h)^2 + k$. Then, identify the turning point and whether it is a maximum or minimum.

(a)
$$y = 3x^2 - 12x + 17$$
 (b) $y = -5x^2 + 40x - 70$

APPLICATIONS

4. A cable is attached at the same height from two poles and hangs between them such that its height above the ground, *y*, in inches, can be modeled using the equation:

$$y = x^2 - 16x + 67$$

where *x* represents the horizontal distance from the left pole, in feet.

- (a) What height is point A above the ground? Show your work and use proper units.
- (b) Write the equation in vertex form.

(d) What is the horizontal distance that separates points A and C? Explain your reasoning.

REASONING

5. Use the vertex form of each of the following quadratic functions to determine which has the lowest y-value.

$$y = x^2 - 8x + 6$$
 $y = x^2 + 6x + 1$

6. Two quadratic functions are shown below, f(x) and g(x). Determine which has the lower minimum value. Explain how you arrived at your answer.

$f(x) = x^2 + 10x$	x	3	4	5	6	7	8	9
	g(x)	-9	-14	-17	-18	-17	-14	-9