\qquad

3-1 POWER FUNCTIONS
 Homework

Fluency

1. Without using your calculator, determine which of the following equations could represent the graph shown below. Explain your choice.
(1) $y=x^{2}$
(2) $y=x^{3}$
(3) $y=-x^{4}$
(4) $y=-x^{5}$

2. Identify which of the following are power functions. For each that is a power function, write it in the form $y=a x^{n}$, where a and n are real numbers. Placing them in these forms may take some mindful algebraic manipulation.
(a) $y=3 \sqrt[5]{x}$
(b) $y=4 x^{5}-7$
(c) $y=\frac{10}{x^{5}}$
(d) $y=\frac{6 x^{7}}{2 x^{3}}$
(e) $y=x^{2}+2 x-7$
(f) $y=\sqrt{48 x^{7}}$
(g) $y=\sqrt{\frac{25}{x^{4}}}$
(h) $y=2(x-3)^{2}$
3. If the point $(-3,8)$ lies on the graph of a power function with an even exponent, which of the following points must also lie its graph?
(1) $(3,-8)$
(3) $(-3,-8)$
(2) $(3,8)$
(4) $(8,-3)$
4. If the point $(-5,12)$ lies on the graph of a power function with an odd exponent, which of the following points must also lie on its graph?
(1) $(5,-12)$
(2) $(12,-5)$
(3) $(-5,-12)$
(4) $(-12,5)$
5. For each of the following polynomials, give a power function that best represents the end behavior of the polynomial.
(a) $y=3 x^{3}-2 x+12$
(b) $y=10-8 x^{2}$
(c) $y=6 x^{5}-4 x^{3}+x-120$
(d) $y=-3 x^{5}+2 x^{4}-4 x+7$
(e) $y=5 x^{4}+2 x^{2}$
(f) $y=-4 x^{5}+8 x^{7}-2 x^{3}+3$

6 The graph below could be the long-run behavior for which of the following functions? Do this problem without graphing each of the following equations.
(1) $y=2 x^{2}-7 x+1$
(2) $y=4 x^{3}+2 x^{2}-6 x+4$
(3) $y=-5 x^{4}+3 x^{3}-2 x^{2}+x+9$
(4) $y=-3 x^{5}-4 x^{2}+2 x+1$

REASONING

7. Let's examine why end-behavior works a little more closely. Consider the functions $f(x)=x^{3}$ and $g(x)=x^{3}+2 x^{2}+7 x+10$.
(a) Fill out the table below for the values of x listed. Round your final column to the nearest hundredth.

x	$f(x)$	$g(x)$	$\frac{f(x)}{g(x)}$
5			
10			
50			
100			

(b) What number is the ratio in the fourth column approaching as x gets larger? What does this tell you about the part of $g(x)$ that can be attributed to the cubic term?

