\qquad

3-3 Graphs and Zeroes of a Polynomial

Fluency

1. Consider the cubic function $y=x^{3}+2 x^{2}-8 x$.
(a) Algebraically determine the zeroes of this cubic function.
(b) Sketch the function on the axes given. Clearly plot and label each x-intercept.

2. Consider the cubic function $y=x^{3}+2 x^{2}-36 x-72$.
(a) Find an appropriate y-window for the x-window shown on the axes and sketch the graph. Make the sure the window is sufficiently large to show the two turning points and all intercepts. Clearly label all x-intercepts.
(c) Based on your answers to (b), how must the expression $x^{3}+2 x^{2}-36 x-72$ factor?
(b) What are the solutions to the equation $x^{3}+2 x^{2}-36 x-72=0$?
3. Consider the cubic function given by $y=x^{3}-6 x^{2}+12 x-5$.
(a) Sketch a graph of this function on the axes given below.

(b) Considering the graphs of cubics you saw in class and those in problems 1 and 2, what is different about the way this cubic's graph looks compared to the others?
4. Consider the quartic function $y=x^{4}-x^{3}-27 x^{2}+25 x+50$.
(a) Sketch the graph of this function on the axes given below. Clearly mark all x-intercepts.

(b) Use your graph from part (a) to solve the equation $x^{4}-x^{3}-27 x^{2}+25 x+50=0$.
(c) Considering your answer to (b), how does the expression $x^{4}-x^{3}-27 x^{2}+25 x+50$ factor?
5. In general, how does the number of zeroes (or x-intercepts) relate to the highest power of a polynomial? Be specific. Can you make a statement about the minimum number of zeroes as well as the maximum?
