5-1 RATIONAL EXPONENTS MATH III HOMEWORK

FLUENCY

- 1. Rewrite the following as equivalent roots and then evaluate as many as possible without your calculator.
 - (a) $36^{\frac{1}{2}}$ (b) $27^{\frac{1}{3}}$ (c) $32^{\frac{1}{5}}$ (d) $100^{-\frac{1}{2}}$

(e)
$$625^{\frac{1}{4}}$$
 (f) $49^{\frac{1}{2}}$ (g) $81^{-\frac{1}{4}}$ (h) $343^{\frac{1}{3}}$

2. Evaluate each of the following by considering the root and power indicated by the exponent. Do as many as possible **without your calculator**.

(a) $8^{\frac{2}{3}}$ (b) $4^{\frac{3}{2}}$ (c) $16^{-\frac{3}{4}}$ (d) $81^{\frac{5}{4}}$

(e)
$$4^{-\frac{5}{2}}$$
 (f) $128^{\frac{3}{7}}$ (g) $625^{\frac{3}{4}}$ (h) $243^{\frac{3}{5}}$

- 3. Given the function $f(x) = 5(x+4)^{\frac{3}{2}}$, which of the following represents its y-intercept?
 - (1) 40 (3) 4
 - (2) 20 (4) 30

- 4. Which of the following is equivalent to $x^{-\frac{1}{2}}$?
 - (1) $-\frac{1}{2}x$ (3) $\frac{1}{\sqrt{x}}$ (2) $-\sqrt{x}$ (4) $-\frac{1}{2x}$
- 5. Written without fractional or negative exponents, $x^{-\frac{3}{2}}$ is equal to

- 6. Which of the following is *not* equivalent to $16^{\frac{3}{2}}$?
 - (1) $\sqrt{4096}$ (3) 64
 - (2) 8^3 (4) $\sqrt{16^3}$

REASONING

7. Marlene claims that the square root of a cube root is a sixth root? Is she correct? To start, try rewriting the expression below in terms of fractional exponents. Then apply the **Product Property of Exponents**.

$$\sqrt[3]{a}$$

8. We should know that $\sqrt[3]{8} = 2$. To see how this is equivalent to $8^{\frac{1}{3}} = 2$ we can solve the equation $8^n = 2$. To do this, we can rewrite the equation as:

$$\left(2^3\right)^n = 2^1$$

How can we now use this equation to see that $8^{\frac{1}{3}} = 2$?

