\qquad

5-1 RATIONAL EXPONENTS Math III Homework

Fluency

1. Rewrite the following as equivalent roots and then evaluate as many as possible without your calculator.
(a) $36^{1 / 2}$
(b) $27^{1 / 3}$
(c) $32^{1 / 5}$
(d) $100^{-1 / 2}$
(e) $625^{1 / 4}$
(f) $49^{1 / 2}$
(g) $81^{-1 / 4}$
(h) $343^{1 / 3}$
2. Evaluate each of the following by considering the root and power indicated by the exponent. Do as many as possible without your calculator.
(a) $8^{2 / 3}$
(b) $4^{3 / 2}$
(c) $16^{-3 / 4}$
(d) $81^{5 / 4}$
(e) $4^{-5 / 2}$
(f) $128^{3 / 7}$
(g) $625^{3 / 4}$
(h) $243^{3 / 5}$
3. Given the function $f(x)=5(x+4)^{3 / 2}$, which of the following represents its y-intercept?
(1) 40
(3) 4
(2) 20
(4) 30
4. Which of the following is equivalent to $x^{-1 / 2}$?
(1) $-\frac{1}{2} x$
(3) $\frac{1}{\sqrt{x}}$
(2) $-\sqrt{x}$
(4) $-\frac{1}{2 x}$
5. Written without fractional or negative exponents, $x^{-3 / 2}$ is equal to
(1) $-\frac{3 x}{2}$
(3) $\frac{1}{\sqrt{x^{3}}}$
(2) $\frac{1}{\sqrt[3]{x^{2}}}$
(4) $-\frac{1}{\sqrt{x}}$
6. Which of the following is not equivalent to $16^{3 / 2}$?
(1) $\sqrt{4096}$
(3) 64
(2) 8^{3}
(4) $\sqrt{16^{3}}$

REASONING

7. Marlene claims that the square root of a cube root is a sixth root? Is she correct? To start, try rewriting the expression below in terms of fractional exponents. Then apply the Product Property of Exponents.
$\sqrt{\sqrt[3]{a}}$
8. We should know that $\sqrt[3]{8}=2$. To see how this is equivalent to $8^{1 / 3}=2$ we can solve the equation $8^{n}=2$. To do this, we can rewrite the equation as:

$$
\left(2^{3}\right)^{n}=2^{1}
$$

How can we now use this equation to see that $8^{1 / 3}=2$?

