5-3 The Method of Common Bases
 Math III Homework

Fluency

1. Solve each of the following exponential equations using the Method of Common Bases. Each equation will result in a linear equation with one solution. Check your answers.
(a) $3^{2 x-5}=9$
(b) $2^{3 x+7}=16$
(c) $5^{4 x-5}=1 / 125$
(d) $8^{x}=4^{2 x+1}$
(e) $216^{x-2}=(1 / 1296)^{3 x-2}$
(f) $(1 / 25)^{x+15}=3125^{\frac{3}{5} x-1}$
2. Algebraically determine the intersection point of the two exponential functions shown below. Recall that most systems of equations are solved by substitution.

$$
y=8^{x-1} \text { and } y=4^{2 x-3}
$$

3. Algebraically determine the zeroes of the exponential function $f(x)=2^{2 x-9}-32$. Recall that the reason it is known as a zero is because the output is zero.

APPLICATIONS

4. One hundred must be raised to what power in order to be equal to a million cubed? Solve this problem using the Method of Common Bases. Show the algebra you do to find your solution.
5. The exponential function $y=\left(\frac{1}{25}\right)^{\frac{x-2}{5}}-10$ is shown graphed along with the horizontal line $y=115$. Their intersection point is $(a, 115)$. Use the Method of Common Bases to find the value of a. Show your work.

REASONING

6 The Method of Common Bases works because exponential functions are one-to-one, i.e. if the outputs are the same, then the inputs must also be the same. This is what allows us to say that if $2^{x}=2^{3}$, then x must be equal to 3 . But it doesn't always work out so easily.

If $x^{2}=5^{2}$, can we say that x must be 5 ? Could it be anything else? Why does this not work out as easily as the exponential case?

