\qquad

INTRODUCTION TO LOGARITHMS Common Core Algebra II Homework

FluENCY

1. Which of the following is equivalent to $y=\log _{7} x$?
(1) $y=x^{7}$
(3) $x=7^{y}$
(2) $x=y^{7}$
(4) $y=x^{1 / 7}$
2. If the graph of $y=6^{x}$ is reflected across the line $y=x$ then the resulting curve has an equation of
(1) $y=-6^{x}$
(3) $x=\log _{6} y$
(2) $y=\log _{6} x$
(4) $x=y^{6}$
3. The value of $\log _{5} 167$ is closest to which of the following? Hint - guess and check the answers.
(1) 2.67
(3) 4.58
(2) 1.98
(4) 3.18
4. Which of the following represents the y-intercept of the function $y=\log (x+1000)-8$?
(1) -8
(3) 3
(2) -5
(4) 5
5. Determine the value for each of the following logarithms. (Easy)
(a) $\log _{2} 32$
(b) $\log _{7} 49$
(c) $\log _{3} 6561$
(d) $\log _{4} 1024$
6. Determine the value for each of the following logarithms. (Medium)
(a) $\log _{2}(1 / 64)$
(b) $\log _{3}(1)$
(c) $\log _{5}(1 / 25)$
(d) $\log _{7}(1 / 343)$
7. Determine the value for each of the following logarithms. Each of these will have non-integer, fractional answers. (Difficult)
(a) $\log _{4} 2$
(b) $\log _{4} 8$
(c) $\log _{5} \sqrt[3]{5}$
(d) $\log _{2} \sqrt[5]{4}$
8. Between what two consecutive integers must the value of $\log _{4} 7342$ lie? Justify your answer.
9. Between what two consecutive integers must the value of $\log _{5}(1 / 500)$ lie? Justify your answer.

APPLICATIONS

10. In chemistry, the pH of a solution is defined by the equation $\mathrm{pH}=-\log (H)$ where H represents the concentration of hydrogen ions in the solution. Any solution with a pH less than 7 is considered acidic and any solution with a pH greater than 7 is considered basic. Fill in the table below. Round your pH 's to the nearest tenth of a unit.

Substance	Concentration of Hydrogen	$\mathbf{p H}$	Basic or Acidic?
Milk	1.6×10^{-7}		
Coffee	1.3×10^{-5}		
Bleach	2.5×10^{-13}		
Lemon Juice	7.9×10^{-2}		
Rain	1.6×10^{-6}		

Reasoning

11. Can the value of $\log _{2}(-4)$ be found? What about the value of $\log _{2} 0$? Why or why not? What does this tell you about the domain of $\log _{b} x$?
