INTRODUCTION TO LOGARITHMS COMMON CORE ALGEBRA II HOMEWORK

FLUENCY

- 1. Which of the following is equivalent to $y = \log_7 x$?
 - (1) $y = x^7$ (3) $x = 7^y$
 - (2) $x = y^7$ (4) $y = x^{\frac{1}{7}}$
- 2. If the graph of $y = 6^x$ is reflected across the line y = x then the resulting curve has an equation of
 - (1) $y = -6^x$ (3) $x = \log_6 y$
 - (2) $y = \log_6 x$ (4) $x = y^6$
- 3. The value of $\log_5 167$ is closest to which of the following? Hint guess and check the answers.
 - (1) 2.67(3) 4.58(2) 1.98(4) 3.18
- 4. Which of the following represents the *y*-intercept of the function $y = \log(x+1000) 8$?
 - (1) -8 (3) 3
 - (2) -5 (4) 5
- 5. Determine the value for each of the following logarithms. (Easy)
 - (a) $\log_2 32$ (b) $\log_7 49$ (c) $\log_3 6561$ (d) $\log_4 1024$
- 6. Determine the value for each of the following logarithms. (Medium)
 - (a) $\log_2(\frac{1}{64})$ (b) $\log_3(1)$ (c) $\log_5(\frac{1}{25})$ (d) $\log_7(\frac{1}{343})$

- 7. Determine the value for each of the following logarithms. Each of these will have non-integer, fractional answers. (Difficult)
 - (a) $\log_4 2$ (b) $\log_4 8$ (c) $\log_5 \sqrt[3]{5}$ (d) $\log_2 \sqrt[5]{4}$
- 8. Between what two consecutive integers must the value of $\log_4 7342$ lie? Justify your answer.
- 9. Between what two consecutive integers must the value of $\log_5(\frac{1}{500})$ lie? Justify your answer.

APPLICATIONS

10. In chemistry, the pH of a solution is defined by the equation pH = -log(H) where *H* represents the concentration of hydrogen ions in the solution. Any solution with a pH less than 7 is considered acidic and any solution with a pH greater than 7 is considered basic. Fill in the table below. Round your pH's to the nearest *tenth* of a unit.

Substance	Concentration of Hydrogen	рН	Basic or Acidic?
Milk	1.6×10^{-7}		
Coffee	1.3×10 ⁻⁵		
Bleach	2.5×10^{-13}		
Lemon Juice	7.9×10 ⁻²		
Rain	1.6×10^{-6}		

REASONING

11. Can the value of $\log_2(-4)$ be found? What about the value of $\log_2 0$? Why or why not? What does this tell you about the domain of $\log_b x$?

