\qquad

5-7 LOGARITHM LAWS Math III Homework

Fluency

1. Which of the following is not equivalent to $\log 36$?
(1) $\log 2+\log 18$
(3) $\log 30+\log 6$
(2) $2 \log 6$
(4) $\log 4+\log 9$
2. The $\log _{3} 20$ can be written as
(1) $2 \log _{3} 2+\log _{3} 5$
(3) $\log _{3} 15+\log _{3} 5$
(2) $2 \log _{3} 10$
(4) $2 \log _{3} 4+3 \log _{3} 4$
3. Which of the following is equivalent to $\log \left(x^{3} / \sqrt[3]{y}\right)$?
(1) $\log x-\log y$
(3) $3 \log x-\frac{1}{3} \log y$
(2) $9 \log (x-y)$
(4) $\log (3 x)-\log (y / 3)$
4. The difference $\log _{2}(3)-\log _{2}(12)$ is equal to
(1) -2
(3) $\frac{1}{4}$
(2) $-\frac{1}{2}$
(4) 4
5. If $\log 5=p$ and $\log 2=q$ then $\log 200$ can be written in terms of p and q as
(1) $4 p+q$
(3) $2(p+q)$
(2) $2 p+3 q$
(4) $3 p+2 q$
6. When rounded to the nearest hundredth, $\log _{3} 7=1.77$. Which of the following represents the value of $\log _{3} 63$ to the nearest hundredth? Hint: write 63 as a product involving 7.
(1) 3.54
(3) 3.77
(2) 8.77
(4) 15.93
7. The expression $4 \log x-\frac{1}{2} \log y+3 \log z$ can be rewritten equivalently as
(1) $\log \left(\frac{x^{4} z^{3}}{\sqrt{y}}\right)$
(3) $\log \left(\frac{x^{4} z^{3}}{2 y}\right)$
(2) $\log \left(\frac{6 x z}{y}\right)$
(4) $\log \left(\frac{6 x^{4} z^{3}}{y}\right)$
8. If $k=\log _{2} 3$ then $\log _{2} 48=$
(1) $2 k+3$
(3) $k+8$
(2) $3 k+1$
(4) $k+4$
9. If $g(x)=8 x^{6}$ and $f(x)=\log _{4}(2 x)$ then $f(g(x))=$?
(1) $4 \log _{4} x+1$
(3) $2\left(3 \log _{4} x+1\right)$
(2) $3\left(\log _{4} x+2\right)$
(4) $6 \log _{4} x+4$

Reasoning

10. Consider the exponential equation $4^{x}=30$.
(a) Between what two consecutive integers must the solution to this equation lie? Explain your reasoning.
(b) Write $\log \left(4^{x}\right)$ as an equivalent product using the third logarithm law.
(c) The solution to the original equation is $x=\frac{\log (30)}{\log (4)}$, can you see why based on (b)? Evaluate this expression and check to see it is correct.
