5-7 LOGARITHM LAWS MATH III HOMEWORK

FLUENCY

- 1. Which of the following is not equivalent to log 36?
 - (1) $\log 2 + \log 18$ (3) $\log 30 + \log 6$
 - (2) $2\log 6$ (4) $\log 4 + \log 9$
- 2. The $\log_3 20$ can be written as
 - (1) $2\log_3 2 + \log_3 5$ (3) $\log_3 15 + \log_3 5$
 - (2) $2\log_3 10$ (4) $2\log_3 4 + 3\log_3 4$
- 3. Which of the following is equivalent to $\log\left(\frac{x^3}{\sqrt[3]{y}}\right)$?
 - (1) $\log x \log y$ (3) $3\log x \frac{1}{3}\log y$

(2)
$$9\log(x-y)$$
 (4) $\log(3x) - \log(\frac{y}{3})$

- 4. The difference $\log_2(3) \log_2(12)$ is equal to
 - (1) -2 (3) $\frac{1}{4}$

$$(2) -\frac{1}{2}$$
 (4) 4

- 5. If $\log 5 = p$ and $\log 2 = q$ then $\log 200$ can be written in terms of p and q as
 - (1) 4p+q (3) 2(p+q)
 - (2) 2p + 3q (4) 3p + 2q

- 6. When rounded to the nearest hundredth, $\log_3 7 = 1.77$. Which of the following represents the value of $\log_3 63$ to the nearest *hundredth*? Hint: write 63 as a product involving 7.
 - (1) 3.54 (3) 3.77
 - (2) 8.77 (4) 15.93
- 7. The expression $4\log x \frac{1}{2}\log y + 3\log z$ can be rewritten equivalently as

(1)
$$\log\left(\frac{x^4z^3}{\sqrt{y}}\right)$$
 (3) $\log\left(\frac{x^4z^3}{2y}\right)$
(2) $\log\left(\frac{6xz}{y}\right)$ (4) $\log\left(\frac{6x^4z^3}{y}\right)$

- 8. If $k = \log_2 3$ then $\log_2 48 =$
 - (1) 2k+3 (3) k+8
 - (2) 3k+1 (4) k+4
- 9. If $g(x) = 8x^6$ and $f(x) = \log_4(2x)$ then f(g(x)) = ?
 - (1) $4\log_4 x + 1$ (3) $2(3\log_4 x + 1)$
 - (2) $3(\log_4 x + 2)$ (4) $6\log_4 x + 4$

REASONING

- 10. Consider the exponential equation $4^x = 30$.
 - (a) Between what two consecutive integers must the solution to this equation lie? Explain your reasoning.
- (b) Write $\log(4^x)$ as an equivalent product using the third logarithm law.
- (c) The solution to the original equation is $x = \frac{\log(30)}{\log(4)}$, can you see why based on (b)? Evaluate this expression and check to see it is correct.

