Unit 3 - Part II Logarithms

Exponentials and logarithms are \qquad functions: they " \qquad " each other.

If $\mathrm{y}=\mathrm{b}^{\times}$, then $\log _{b} y=x$

Examples:

I. Write in exponential form:

1. $\log _{3} 81=4$
2. $\log _{36} 6=1 / 2$
3. $\log _{3} 1 / 9=-2$
II. Write in logarithmic form:
4. $32=2^{5}$
5. $5^{4}=625$
6. $10^{0}=1$
III. Evaluate

To evaluate a log expression, convert to exponential form.

1. So $\log _{2} 8$ would be written:
2. So $\log _{27} 3$ would be written:
"Do the Loop" and solve!

You try!

a. $\log _{5} 25=$
b. $\log _{16} 4=$

A \qquad logarithm is a log that uses base \qquad . You can drop the base 10 (assumed):

So " $\log _{10} \mathrm{y}$ " can be written: $\log \mathrm{y}$.

* Your calculator understands base 10 logs.

Evaluate using the LOG button in your calculator:

1. $\log 1000=$
IV. Rewrite using Change of Base and then solve (put in calculator!)
*If you do not have a base 10 log, you must use:
the Change of base formula or your calculator:
Chase of Base Formula: $\log _{\mathrm{b}} \mathrm{M}=$

ALPHA, WINDOW, \#5 logBase(

1. $\log _{2} 9=$
2. $\log _{5} 510=$

Properties of Logs

Examples: Rewrite each expression as a single log:

1. $\log 2+\log 3=$
2. $\log _{4} 64-\log _{4} 16=$
3. $6 \log _{5} x+\log _{5} y$
4. $\log 8-2 \log 6+\log 3$

Expand each logarithm:
5. $\log \left(x^{3} y^{5}\right)$
6. $\log _{7}(22 \mathrm{xyz})$
7. $\log _{6}[7(2 x-3)]$
8. $\log _{3}(x \sqrt{7})$

Logarithm Laws
 Common Core Algebra II

Logarithms have properties, just as exponents do, that are important to learn because they allow us to solve a variety of problems where logarithms are involved. Keep in mind that since logarithms give exponents, the laws that govern them should be similar to those that govern exponents. Below is a summary of these laws.

EXPONENT AND LOGARITHM LAWS

LAW	EXPONENT VERSION	LOGARITHM VERSION
Product	$b^{x} \cdot b^{y}=b^{x+y}$	$\log _{b}(x \cdot y)=\log _{b} x+\log _{b} y$
Quotient	$\frac{b^{x}}{b^{y}}=b^{x-y}$	$\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
Power	$\left(b^{x}\right)^{y}=b^{x \cdot y}$	$\log _{b}\left(x^{y}\right)=y \cdot \log _{b} x$

Exercise \#1: Which of the following is equal to $\log _{3}(9 x)$?
(1) $\log _{3} 2+\log _{3} x$
(3) $2+\log _{3} x$
(2) $2 \log _{3} x$
(4) $x+\log _{3} 2$

Exercise \#2: The expression $\log \left(x^{2} / 1000\right)$ can be written in equivalent form as
(1) $2 \log x-3$
(3) $2 \log x-6$
(2) $\log 2 x-3$
(4) $\log 2 x-6$

Exercise \#3: If $a=\log 3$ and $b=\log 2$ then which of the following correctly expresses the value of $\log 12$ in terms of a and b ?
(1) $a^{2}+b$
(3) $2 a+b$
(2) $a+b^{2}$
(4) $a+2 b$

Exercise \#4: Which of the following is equivalent to $\log _{2}\left(\sqrt{x} / y^{5}\right)$?
(1) $\sqrt{\log _{2} x}-5 \log _{2} y$
(3) $\frac{1}{2} \log _{2} x-5 \log _{2} y$
(2) $2 \log _{2} x+5 \log _{2} y$
(4) $2 \log _{2} x-5 \log _{2} y$

Exercise \#5: The value of $\log _{3}(\sqrt{5} / 27)$ is equal to
(1) $\frac{\log _{3} 5-6}{2}$
(3) $\frac{\log _{3} 5-3}{2}$
(2) $2 \log _{3} 5+3$
(4) $2 \log _{3} 5-3$

Exercise \#6: If $f(x)=\log (x)$ and $g(x)=100 x^{3}$ then $f(g(x))=$
(1) $100 \log x$
(3) $300 \log x$
(2) $6+\log x$
(4) $2+3 \log x$

Exercise \#7: The logarithmic expression $\log _{2} \sqrt{32 x^{7}}$ can be rewritten as
(1) $\sqrt{\log _{2} 35 x}$
(3) $\sqrt{5+7 \log _{2} x}$
(2) $\frac{5+7 \log _{2} x}{2}$
(4) $\frac{35+\log _{2} x}{2}$

Exercise \#8: If $\log 7=k$ then $\log (4900)$ can be written in terms of k as
(1) $2(k+1)$
(3) $2(k-3)$
(2) $2 k-1$
(4) $2 k+1$

The logarithm laws are important for future study in mathematics and science. Being fluent with them is essential. Arguably, the most important of the three laws is the power law. In the next exercise, we will examine it more closely.

Exercise \#9: Consider the expression $\log _{2}\left(8^{x}\right)$.
(a) Using the third logarithm law (the Product Law), rewrite this as equivalent product and simplify.
(b) Test the equivalency of these two expressions for $x=0,1$, and 2 .
(c) Show that $\log _{2}\left(8^{x}\right)=3 x$ by rewriting 8 as 2^{3}.

There are three different types of log equations:
A) Equations with a log on one side only:

1. $2 \log _{4} n=10$
2. $\log _{64} y=1 / 2$

You Try These!
a. $\log _{64} x=1 / 3$
b. $\log _{3} x=3$
B) Equations with logs (same base) on both sides :

Rule: Drop the logs!
3. $\log _{5}(3 x-1)=\log _{5}(2 x+7)$
4. $\quad \log \left(p^{2}-2\right)=\log p$

You try these!
c. $\log \left(x^{2}+1\right)=1$
d. $\quad \log _{7}(3 y+4)=\log _{7}(6 y-20)$
III. Equations with no logs (using the Change of Base Formula):

Example: Solve each equation:
5. $5^{2 x}+4=20$
6. $3^{x+4}=101$

You try these!
e. $2^{x-3}+6=20$
f. $4^{3 x}=4096$

Practice: Solve for x. (Determine which method to use!)

1. $3^{x-1}=24$
2. $2 \log x=-4$
3. $\log \left(x^{2}+6 x\right)=\log (55)$
4. $5^{3 x}-16=484$

MENTAL MATH!

1. $2^{\mathrm{x}}=1 / 2$
2. $3^{x}=27$
3. $\log _{9} 3=x$
4. $\log _{4} 64=x$
5. $\log _{8} 2=x$
6. $10^{x}=1 / 100$
7. $\log _{5} 125=\mathrm{x}$
8. $25^{x}=1 / 5$

The Number e and the Natural Logarithm Common Core Algebra II

There are many numbers in mathematics that are more important than others because they find so many uses in either mathematics or science. Good examples of important numbers are $0,1, i$, and π. In this lesson you will be introduced to an important number given the letter \mathbf{e} for its "inventor" Leonhard Euler (1707-1783). This number plays a crucial role in Calculus and more generally in modeling exponential phenomena.

The number " e " can be used as a base for exponents. (REMEMBER: $A=P$ e ${ }^{r t}$)
The function $y=e^{x}$ has an inverse, the natural logarithmic function.

If $y=e^{x}$, then $\log _{e} y=$ \qquad . This is commonly written as $\ln y=x$.
The properties of common logarithms apply to natural logarithms

Example 1: Write as a single logarithm:

1. $2 \ln 12-\ln 9=$ \qquad
2. $\frac{1}{3}(\ln \mathrm{x}+\ln \mathrm{y})-4 \ln \mathrm{z}=$ \qquad

Example 2: Simplify. (Hint: you may use your calculator!)
3. $\ln 1=$ \qquad
4. $10 \ln \mathrm{e}=$ \qquad
5. $\frac{\ln e^{2}}{2}=$ \qquad

Solving Natural Log equations $\mathbf{- 2}$ Methods!

Type 1) Solving equations with "In" on one side: "Do the Loop!" (Hint: In = $\log _{\mathrm{e}}$)
a) $\ln (2 x-4)^{3}=6$
b) $\ln (x+2)-\ln 4=3$

Type 2) Solving an exponential equation with "e". (Hint: natural log each side!)
a) $e^{x / 9}-8=6$
b) $4 e^{3 x}+1.2=14$

You Try!

1. $\ln (x+6)^{2}=18$
2. $\ln (2 x-5)+\ln 3=27$
3. $2 \mathrm{e}^{\mathrm{x}}-4=16$
4. $e^{x+9}+1=49$

Word Problems: Solve these with an algebraic approach!

1. An initial investment of $\$ 200$ is now valued at $\$ 254.25$. The interest rate is 6%, compounded continuously. How long has the money been invested?
2. A laboratory assistant tests an antibiotic that causes a rate of decline of 0.14 . How long should it take for a population of 8000 to shrink to 500 ?

Word Problem Practice!

Write an equation and solve algebraically.

1. There are initially 1000 bacteria in a culture. The number of bacteria doubles each hour. The number of bacteria N present after t hours is $N=1000(2)^{t}$. How long will it take the culture to increase to 50,000 bacteria?
2. If Mike deposits $\$ 1000$ in an account paying 3.4% annual interest compounded continuously, how long will it take Mike's account to double?
3. A furniture store is closing out its business. Each week the owner lowers prices by 25%. After how many weeks will the sale price of a $\$ 500$ item drop below $\$ 100$?
4. As technology advances, the price of many graphing calculators goes down. If your graphing calculator cost $\$ 104$ and the price decreases each year by 9%, after how many years will your calculator be worth half its original value?
