Be able to identify and use the points of concurrency:

For problems 1-4 identify the point of concurrency shown and what constructions form it:

Point: Formed By three:

Point: Formed By three:

Point: Formed By three:

Point: Formed By three:

5. Point G is the centroid of $\triangle ABC$. $\overline{AD} = 8$, $\overline{AG} = 10$, and $\overline{CD} = 18$.

Find the length of the given segments:

$$\overline{BD} =$$

$$\overline{AE} =$$

$$\overline{AB} = \underline{\hspace{1cm}}$$

$$CG =$$

$$\overline{EG} =$$

$$\overline{DG} =$$

In triangle SRK below, medians \overline{SC} , \overline{KE} , and \overline{RL} intersect at M.

Which statement must always be true?

- 1) 3(MC) = SC
- RM = 2MC
- SM = KM

In the diagram below of $\triangle MAR$, medians \overline{MN} , \overline{AT} , \overline{AT} , \overline{AT} in the diagram below of $\overline{\triangle ABC}$, $\overline{AE} \cong \overline{BE}$, $\overline{AF} \cong \overline{CF}$, and $\overline{CD} \cong \overline{BD}$. and RH intersect at O.

If TO = 10, what is the length of \overline{TA} ?

- 2) 25

- 1) 30
- 3) 20
- 4) 15

- Point P must be the
- 1) centroid
- 2) circumcenter
- 3) incenter
- 4) orthocenter

9.

6.

A cross-section is cut from the circular cone below.

10.

What is the shape of the cross-section?

- A Square
- B Semicircle
- © Triangle
- ① Circle

A cube with a cylinder cut from its enter is cut along the plane shown elow.

Which of the following is the cross-section of this solid?

Be able to identify and use the proprieties of a quadrilaterals, specifically parallelograms:

In the accompanying diagram of parallelogram ABCD, $m\angle B = 5x$, and $m\angle C = 2x + 12$. Find the number of degrees in $\angle D$.

As shown in the diagram below, the diagonals of parallelogram *QRST* intersect at *E*. If $QE = x^2 + 6x$, SE = x + 14, and TE = 6x - 1, determine *TE* algebraically.

13.

In the diagram below of parallelogram *ABCD* with diagonals \overline{AC} and \overline{BD} , $m\angle 1 = 45$ and $m\angle DCB = 120$.

What is the measure of $\angle 2$?

- 1) 15°
- 2) 30°
- 3) 45°
- 4) 60°

15.

Parallelogram \overline{HAND} is drawn below with diagonals \overline{HN} and \overline{AD} intersecting at S.

Which statement is always true?

- $1) \quad AN = \frac{1}{2}AD$
- $2) \quad AS = \frac{1}{2}AD$
- 3) $\angle AHS \cong \angle ANS$
- 4) $\angle HDS \cong \angle NDS$

14.

In quadrilateral *BLUE* shown below, $\overline{BE} \cong \overline{UL}$.

Which information would be sufficient to prove quadrilateral *BLUE* is a parallelogram?

- 1) $\overline{BL} \parallel \overline{EU}$
- 2) $\overline{LU} \parallel \overline{BE}$
- 3) $\overline{BE} \cong \overline{BL}$
- 16. 4) $\overline{LU} \cong \overline{EU}$

Which statement about parallelograms is always true?

- 1) The diagonals are congruent.
- 2) The diagonals bisect each other.
- 3) The diagonals are perpendicular.
- 4) The diagonals bisect their respective angles.

17.

Quadrilateral *MATH* has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral *MATH* is always true?

- 1) $\overline{MT} \cong \overline{AH}$
- 2) $\overline{MT} \perp \overline{AH}$
- 3) $\angle MHT \cong \angle ATH$
- 4) $\angle MAT \cong \angle MHT$

Be able to identify and use the proprieties of a circles in general and standard form.

18. Graph the following circle:

b.
$$(x-2)^2 + (y-5)^2 = 9$$

c.
$$(y+4)^2 + (x+2)^2 = 16$$

19. For each circle: Identify its center and radius.
a.
$$(x+3)^2 + (y-1)^2 = 4$$
 b. $x^2 + (y-3)^2 = 18$ c. $(y+8)^2 + (x+2)^2 = 72$

a.
$$(x+3)^2 + (y-1)^2 = 4$$

b.
$$x^2 + (y - 3)^2 = 18$$

c.
$$(y + 8)^2 + (x + 2)^2 = 72$$

Center:____

Center:

Center:

Radius:

Radius:

Radius:

20. Write the equation of the following circles:

Find the standard form, center, and radius of the following circles: $x^2+y^2-4x+8y-5=0$ b) $x^2+y^2+9y+5=0$ 21.

$$x^2 + y^2 - 4x + 8y - 5 = 0$$

b)
$$x^2 + y^2 + 9y + 5 = 0$$

Center:____

Radius:

Center:____

Radius:

22.
$$x^2 - 2x + y^2 + 8y - 8 = 0$$

$$x^2 + y^2 - 6x + 4y - 3 = 0$$

Center:____

Radius:

Center:____

Radius:

- ²³A circle has the equation $(x-2)^2 + (y+3)^2 = 36$. What is an equation of circle O shown in the graph What are the coordinates of its center and the length below? of its radius?
 - 1) (-2,3) and 6
 - 2) (2,-3) and 6
 - 3) (-2,3) and 36
 - 4) (2,-3) and 36
- 24. The center and radius of the given circle

$$(x-3)^2 + (y+8)^2 = 39$$
 are:

- 1) (3,-8), r=39
- 2) $(-3,-8), r = \sqrt{39}$
- 3) $(-3.8), r = \sqrt{39}$
- 4) $(3,-8), r = \sqrt{39}$
- 25.

What are the coordinates of the center of a circle whose equation is $x^2 + y^2 - 16x + 6y + 53 = 0$?

- 1) (-8, -3)
- (-8,3)
- (8,-3)
- 4) (8,3)
- 26. The equation $4x^2 24x + 4y^2 + 72y = 76$ is equivalent to

1)
$$4(x-3)^2 + 4(y+9)^2 = 76$$

2)
$$4(x-3)^2 + 4(y+9)^2 = 121$$

3)
$$4(x-3)^2 + 4(y+9)^2 = 166$$

4)
$$4(x-3)^2 + 4(y+9)^2 = 436$$

- The equation of a circle is $x^2 + y^2 6x + 2y = 6$. What are the coordinates of the center and the length of the radius of the circle?
 - center (-3, 1) and radius 4
 - 2) center (3,-1) and radius 4
 - 3) center (-3,1) and radius 16
 - 4) center (3,-1) and radius 16

- 1) $(x+2)^2 + (v-2)^2 = 9$
- 2) $(x+2)^2 + (y-2)^2 = 3$
- 3) $(x-2)^2 + (v+2)^2 = 9$
- 4) $(x-2)^2 + (v+2)^2 = 3$

29.

What is an equation of circle O shown in the graph below?

- 1) $(x+1)^2 + (y-3)^2 = 25$
- 2) $(x-1)^2 + (y+3)^2 = 25$
- 3) $(x-5)^2 + (y+6)^2 = 25$
- 4) $(x+5)^2 + (y-6)^2 = 25$

Be able to identify and use the proprieties of a both angles, arcs, and line segments using circles.

 The new corporate logo created by the design engineers at Magic Motors is shown in the accompanying diagram.

If chords \overline{BA} and \overline{BC} are congruent and $\widehat{mBC} = 140$, what is $m \angle B$?

- 1) 40
- 2) 80
- 3) 140
- 4) 280
- 31. In the diagram below of circle O, \overline{PAC} and \overline{PBD} are secants.

If $\widehat{mCD} = 70$ and $\widehat{mAB} = 20$, what is the degree measure of $\angle P$?

- 1) 25
- 2) 35
- 3) 45
- 4) 50

32. In a circle, chords \overline{AB} and \overline{CD} intersect at point E. If AE = x + 1, CE = 2, and ED = 3, find the value of x

33. In the accompanying diagram of circle O, secant \overline{CBA} and \overline{CED} intersect at C. If AC = 12, BC = 3, and DC = 9, find EC.

In the diagram below, \overline{PS} is a tangent to circle O at point S, \overline{PQR} is a secant, PS = x, PQ = 3, and PR = x + 18.

(Not drawn to scale)

What is the length of \overline{PS} ?

- 1) 6
- 2) 9
- 3) 3
- 4) 27

35. In the accompanying diagram, PD is tangent to circle O at D, PAC is a secant, chords BD and AC intersect at E, chord AD is drawn, mBC = mCA, mBC is twice mAB, and m∠DAC = 48.

Find \widehat{mAB} , \widehat{mAD} , $\widehat{m\angle CPD}$, $\widehat{m\angle CED}$ and $\widehat{m\angle ADP}$.

37. In circle A below, chord \overline{BC} and diameter \overline{DAE} intersect at F.

If $\widehat{mCD} = 46^{\circ}$ and $\widehat{mDB} = 102^{\circ}$, what is $m \angle CFE$?

36.

In the accompanying diagram of circle O, ADB and \overline{AEC} are secants, chords \overline{BE} and \overline{CD} intersect at F, tangent \overline{GH} intersects circle O at C, $\overline{mBD} = 100$, $\overline{mDE} = 70$, and $\overline{mEC} = 80$.

38.

In the accompanying diagram of circle O, \overline{AB} and \overline{BC} are chords and $m\angle AOC = 96$. What is $m\angle ABC$?

- 1) 32
- 2) 48
- 3) 96
- 4) 192

(a) m∠BAC (b) m∠BDC (c) m∠CFE (d) m∠GCE (e) m∠AEB