\qquad

1. The "BOX Problem":

An open box is made from an 8-by-10-inch rectangular piece of cardboard by cutting squares from each corner and folding up the sides.
a) If x represents the side length of the squares, write an expression
 for the length, width, and height of the box.

$$
\ell=\quad \mathrm{w}=\square
$$

b) Write an expression in standard form for the Volume of the box in terms if x, the length of the square.

$$
\mathrm{V}=\ell \mathrm{wh}
$$

c) What is the maximum volume? \qquad
d) What size squares should be cut to produce this volume? \qquad
e) If the volume of the box is $48 \mathrm{in}^{3}$, what is the side length for the square that should be cut? \qquad
(Note: The amount of cardboard waste must be minimized.)
2. A box is to be mailed. The volume in cubic feet of the box can be expressed as:

$$
V(x)=x^{3}-6 x^{2}+3 x+10
$$

What is the maximum volume? \qquad
3. The length of a swimming pool is 3 times its width. The depth of the pool is one less than twice the width.
a) Express the volume of the pool as a polynomial in factored form.
b) Find the depth of the pool if the volume is $135 \mathrm{ft}^{3}$. \qquad

4. The product of three consecutive integers is -336 . Find the numbers. \qquad

5. The dimensions of this rectangular prism are given algebraically.

What is the approximate width (w) that will maximize the volume?

A 1 unit
B $1 \frac{1}{2}$ units
C $1 \frac{3}{4}$ units
D 2 units
6. Anthony is making an open-top box out of an 8 -inch by 14 -inch piece of cardboard. He will cut a small square from each corner of the cardboard and fold the edges up to make the box. Let x represent the length of the side of each square removed.

What function $V(x)$, correctly gives the volume of the box in terms of x ?
A $V(x)=4 x^{2}-44 x+112 x$
B $V(x)=4 x^{2}-22 x+112$
$C V(x)=4 x^{3}-22 x^{2}+112 x$
$D V(x)=4 x^{3}-44 x^{2}+112 x$
7. The dimensions in inches of a doghouse can be expressed as width x, length $x+4$, and height $x-3$. The volume is $15.9 \mathrm{ft}^{3}$. Find the dimensions of the doghouse.
(Hint: Convert the volume to cubic inches!)

8. The width of a box is 2 m less than the length. The height is 1 m less than the length.

The volume is $60 \mathrm{~m}^{3}$. Find the length of the box. \qquad

9. Suppose a 2-in. thick slice is cut from the block of cheese as shown. The remaining block has a volume of $224 \mathrm{in}^{3}{ }^{3}$.

Find the dimensions of the original block. \qquad

