\qquad

3-5 THE REMAINDER THEOREM

Fluency

1. Which of the following is the remainder when the polynomial $x^{2}-5 x+3$ is divided by $(x-8)$?
(1) 107
(3) 3
(2) 27
(4) 9
2. If the ratio $\frac{2 x^{2}+17 x+42}{x+5}$ is placed in the form $q(x)+\frac{r}{x+5}$, where $q(x)$ is a polynomial, then which of the following is the correct value of r ?
(1) -3
(3) 18
(2) 177
(4) 7
3. When the polynomial $p(x)$ was divided by the factor $x-7$ the result was $x+\frac{11}{x-7}$. Which of the following is the value of $p(7)$?
(1) -8
(3) 11
(2) 7
(4) It does not exist
4. Which of the following binomials is a factor of the quadratic $4 x^{2}-35 x+24$? Try to do this without factoring but by using the Remainder Theorem.
(1) $x+6$
(3) $x-8$
(2) $x-4$
(4) $x+2$
5. Which of the following linear expressions is a factor of the cubic polynomial $x^{3}+9 x^{2}+16 x-12$?
(1) $x+6$
(3) $x-3$
(2) $x-1$
(4) $x+2$
6. Consider the cubic polynomial $p(x)=x^{3}+x^{2}-46 x+80$.
(a) Using polynomial long division, write the ratio of $\frac{p(x)}{x-3}$ in quotient-remainder form, i.e. in the form $q(x)+\frac{r}{x-3}$. Evaluate $p(3)$. How does this help you check your quotient-remainder form?
(b) Evaluate $p(5)$. What does this tell you about the binomial $x-5$?
(c) If $q(x)=\frac{p(x)}{x-5}$, then use polynomial long division to find an expression for the polynomial $q(x)$.
(d) Use your answer from (c) to completely factor the cubic polynomial $p(x)$. Besides $x=5$, what are its other zeroes?
7. For the cubic $x^{3}+7 x^{2}+13 x+3$ has only one rational zero, $x=-3$. Use polynomial long division to show that the remainder is zero when dividing the cubic by $x+3$. Then use the quadratic formula to find the other two (irrational) zeroes.
