\qquad

1-3 Key Features of Functions

Fluency

1. The piecewise linear function $f(x)$ is shown to the right. Answer the following questions based on its graph.
(a) Evaluate each of the following based on the graph:
(i) $f(4)=$
(ii) $f(-3)=$
(b) State the zeroes of $f(x)$.
(c) Over which of the following intervals is $f(x)$ always increasing?

(1) $-7<x<-3$
(3) $-5<x<5$
(2) $-3<x<5$
(4) $-5<x<3$
(d) State the coordinates of the maximum and the minimum of this function.

Maximum: \qquad

Minimum: \qquad (2) $2 \leq x \leq 7$
(4) $-5 \leq x \leq 2$
(e) Over which of the following intervals is $f(x)<0$?
(1) $-7<x<-3$
(3) $-5<x<2$
(g) A third function $h(x)$ is defined by the formula $h(x)=x^{3}-3$. What is the value of $g(h(2))$? Show how you arrived at your answer.
2. For the function $g(x)=9-(x+1)^{2}$ do the following.
(a) Determine the y-intercept and express it in function notation.
(b) State the zeroes of g.
(c) Over what interval is $g(x)$ decreasing?

(d) Over what interval is $g(x) \geq 0$?(e) State the range of g.
3. Draw a graph of $y=f(x)$ that matches the following characteristics.

Increasing on: $-8<x<-4$ and $-1<x<5$
Decreasing on: $-4<x<-1$
$f(-8)=-5$ and zeroes at $x=-6,-2$, and 3

Absolute maximum of 7 and absolute minimum of -5

4. A continuous function has a domain of $-7 \leq x \leq 10$ and has selected values shown in the table below. The function has exactly two zeroes and a relative maximum at $(-4,12)$ and a relative minimum at $(5,-6)$.

x	-7	-4	-1	0	2	5	7	10
$f(x)$	8	12	0	-2	-5	-6	0	4

(a) State the interval on which $f(x)$ is decreasing.
(b) State the interval over which $f(x)<0$.

