\qquad

UNIT \#2 - TRANSFORMATIONS OF FUNCTIONS

Be sure you review Unit 1 as test will be cumulative -10% or test will include review materials. 2-1 - Review of Quadratics:

2-2 - More Useful Functions:

2-3/2-4 - Function Transformations:

2-5 More work with Piecewise:

2-6 Factoring (All Types)

Rules for Transformation of Functions		
Transformation	Function	Devcription
Horizontal Shift	$f(x+h)$	Shift left h units
	$f(x-h)$	Shift right h units
Vertical Shift	$f(\mathrm{x})+\mathrm{k}$	Shift up k units
	$f(x)-k$	Shift down k units
Reflection	-f(x)	Reflect across x-axis
	$f(-x)$	Reflect across y-amb
Vertical Stretch/Compress	$a \mathrm{f}(\mathrm{x}), a>1$	Stretch vertically by a factor of a
	$a f(x), 0<a<1$	Compress vertically by a factor of a
Horisontal Stretch/Compress	(fax) $a>1$	Compress horizontally by a factor of $\frac{1}{a}$
	$($ ($0 x), 0<0<1$	Stretch horizontally by a factor of $\frac{1}{a}$

2-7 Zero Product

2-8 - Complete the Square

Part I Practice Questions

1. The quadratic function $f(x)$ has a turning point at $(5,-8)$. If $g(x)=f(x+7)-3$, then at which of the following does $g(x)$ have a turning point?
(1) $(-2,-11)$
(3) $(-7,-3)$
(2) $(12,-11)$
(4) $(12,-5)$
2. Where does the absolute value function $y=\frac{1}{2}|x-8|+3$ have a turning point?
(1) $(-4,3)$
(3) $(8,3)$
(2) $(4,-3)$
(4) $(8,-3)$
3. The function $f(x)$ is shown below graphed in solid while the function $g(x)$ is shown dashed. Which of the following equations describes the relationship between the two functions?
(1) $g(x)=f(x)-6$
(2) $g(x)=-\frac{1}{2} f(x)$
(3) $g(x)=2 f(x)$
(4) $g(x)=f\left(\frac{1}{2} x\right)$

4. Given that the function $y=x^{2}+6 x-27$ has x-intercepts at $x=-9$ and $x=3$, where does the function $y=(3 x)^{2}+6(3 x)-27$ have x-intercepts?
(1) $x= \pm 6$
(3) $x=-27$ and $x=9$
(2) $x=-12$ and $x=0$
(4) $x=-3$ and $x=1$
5.If the point $(-3,7)$ lies on the graph of $f(x)$, then which of the following points must lie on the graph of $y=5 f(x)-20$?
(1) $(-15,-13)$
(3) $(2,-13)$
(2) $(-3,15)$
(4) $(1,25)$
5. The range of the function $f(x)$ is $-4 \leq y \leq 10$. If $g(x)=-f(x)+3$ then which of the following is the range for $g(x)$?
(1) $-7 \leq y \leq 7$
(3) $-13 \leq y \leq 1$
(2) $5 \leq y \leq 15$
(4) $-3 \leq y \leq 8$
6. The trinomial $4 x^{2}-3 x-10$ can be written equivalently as
(1) $(2 x-5)(2 x+2)$
(3) $(4 x+1)(x-10)$
(2) $(2 x-1)(x+10)$
(4) $(4 x+5)(x-2)$
7. The cubic polynomial $3 x^{3}+5 x^{2}+12 x+20$ can be factored as
(1) $(3 x+5)(x+2)^{2}$
(3) $(x+5)(3 x+2)$
(2) $(3 x+5)\left(x^{2}+4\right)$
(4) $(x+5)(x-2)(x+2)$
8. The equation $5 x(x-7)^{2}(3 x+2)=0$ has a solution set of
(1) $\left\{-5,-\frac{2}{3}, \pm 7\right\}$
(3) $\left\{-\frac{2}{3}, 0,7\right\}$
(2) $\{-5,-2,7\}$
(4) $\{-2,0, \pm 7\}$
9. The quadratic function $f(x)=10 x^{2}+11 x-6$ has one zero at $x=-\frac{3}{2}$. At which of the following x-values is its other zero?
(1) $x=6$
(3) $x=\frac{1}{6}$
(2) $x=\frac{2}{5}$
(4) $x=-4$
10. The parabola $y=3 x^{2}-24 x+55$ can be written in the form
(1) $y=3(x-2)^{2}+2$
(3) $y=3(x+2)^{2}-11$
(2) $y=3(x-8)^{2}+55$
(4) $y=3(x-4)^{2}+7$
11. Which equation below represents the graph shown?
(1) $y=\sqrt{x-2}-5$
(2) $y=-\sqrt{x+2}+5$
(3) $y=-\sqrt{x-2}+5$
(4) $y=\sqrt{x+2}+5$

Free Response

13. For the function $f(x)$ it is known that $(-12,4)$ lies on the function. A second function, $g(x)$, is defined by the formula $g(x)=f(2 x)-3$.

Describe the transformations that occur to the graph of f in order to produce the graph of g.

Based on the fact that the point $(-12,4)$ lies on $f(x)$, what point must lie on $g(x)$?
14. The graph of the function $f(x)$ is shown below. The function $g(x)$ is defined by the formula $g(x)=-2 f(x)$ for all values of x.

Produce the graph of g on the same grid.

Solve the equation $f(x)=g(x)$ for all values of x.

15. The graph of $f(x)$ is shown below. The function $g(x)$ is defined by $g(x)=5 f\left(\frac{x}{2}\right)$.

Explain the transformations that will transform the graph of $f(x)$ into the graph of $g(x)$ and then produce it on the same grid.

16. Given the parabola $f(x)=-(x-8)^{2}+5$, describe three transformations which would transform the graph of $y=x^{2}$ into the graph of $f(x)$. Give both the transformations and the order.
17. Describe the difference between the transformations $f(-x)$ and $-f(x)$ on the graph of $f(x)$.
18. Factor the expression below completely.

$$
8 x^{2}+12 x-8 \quad 12 x^{3}+20 x^{2}-3 x-5 \quad 27 x^{3}-y^{3}
$$

19. Shana believes one of the two binomial factors of $12 x^{2}+35 x+8$ is $3 x+2$. Is she correct? Explain your answer.
20. Find each of the following cube roots without the use of your calculator. Justify your answer based on a multiplication statement.
(a) $\sqrt[3]{8}$
(b) $\sqrt[3]{-1}$
(c) $\sqrt[3]{125}$
(d) $\sqrt[3]{0}$
(e) $\sqrt[3]{-8}$
(f) $\sqrt[3]{27}$
(g) $\sqrt[3]{\frac{1}{64}}$
(h) $\sqrt[3]{-\frac{1}{1000}}$
