Name: _____

Date: _____

UNIT #2 – TRANSFORMATIONS OF FUNCTIONS

Be sure you review Unit 1 as test will be cumulative – 10% or test will include review materials. 2-1 - Review of Quadratics:

2-2 – More Useful Functions:

2-3/2-4 – Function Transformations:

Rules for Transformation of Functions				
Transformation	Function	Description		
Horizontal Shift	f(x + h)	Shift left h units		
	f(x - h)	Shift right h units		
Vertical Shift	f(x) + k	Shift up k units		
	f(x) - <i>k</i>	Shift down k units		
Reflection	-f(x)	Reflect across x-axis		
	f(-x)	Reflect across y-axis		
Vertical Stretch/Compress	a f(x), a > 1	Stretch vertically by a factor of a		
	a f(x), 0 < a < 1	Compress vertically by a factor of a		
Horizontal Stretch/Compress	$f(ax),a\geq 1$	Compress horizontally by a factor of $\frac{1}{a}$		
	f(ax), 0 < a < 1	Stretch horizontally by a factor of $\frac{1}{a}$		

2-5 More work with Piecewise:

2-6 Factoring (All Types)

2-7 Zero Product

2-8 – Complete the Square

Part I Practice Questions

- 1. The quadratic function f(x) has a turning point at (5, -8). If g(x) = f(x+7) 3, then at which of the following does g(x) have a turning point?
 - $(1) (-2, -11) \qquad (3) (-7, -3)$
 - (2) (12, -11) (4) (12, -5)

2. Where does the absolute value function $y = \frac{1}{2}|x-8|+3$ have a turning point?

- (1) (-4, 3) (3) (8, 3)
- (2) (4, -3) (4) (8, -3)
- 3. The function f(x) is shown below graphed in solid while the function g(x) is shown dashed. Which of the following equations describes the relationship between the two functions?

- 4. Given that the function $y = x^2 + 6x 27$ has x-intercepts at x = -9 and x = 3, where does the function $y = (3x)^2 + 6(3x) 27$ have x-intercepts?
 - (1) $x = \pm 6$ (3) x = -27 and x = 9
 - (2) x = -12 and x = 0 (4) x = -3 and x = 1

5. If the point (-3, 7) lies on the graph of f(x), then which of the following points must lie on the graph of y = 5f(x) - 20?

- (1) (-15, -13) (3) (2, -13)
- (2) (-3, 15) (4) (1, 25)

- 6. The range of the function f(x) is $-4 \le y \le 10$. If g(x) = -f(x) + 3 then which of the following is the range for g(x)?
 - (1) $-7 \le y \le 7$ (3) $-13 \le y \le 1$
 - (2) $5 \le y \le 15$ (4) $-3 \le y \le 8$
- 7. The trinomial $4x^2 3x 10$ can be written equivalently as

(1) (2x-5)(2x+2)(3) (4x+1)(x-10)(2) (2x-1)(x+10)(4) (4x+5)(x-2)

- 8. The cubic polynomial $3x^3 + 5x^2 + 12x + 20$ can be factored as
 - (1) $(3x+5)(x+2)^2$ (3) (x+5)(3x+2)(2) $(3x+5)(x^2+4)$ (4) (x+5)(x-2)(x+2)
- 9. The equation $5x(x-7)^2(3x+2)=0$ has a solution set of
 - (1) $\left\{-5, -\frac{2}{3}, \pm 7\right\}$ (3) $\left\{-\frac{2}{3}, 0, 7\right\}$ (2) $\left\{-5, -2, 7\right\}$ (4) $\left\{-2, 0, \pm 7\right\}$
- 10. The quadratic function $f(x) = 10x^2 + 11x 6$ has one zero at $x = -\frac{3}{2}$. At which of the following *x*-values is its other zero?
 - (1) x = 6(2) $x = \frac{2}{5}$ (3) $x = \frac{1}{6}$ (4) x = -4
- 11. The parabola $y = 3x^2 24x + 55$ can be written in the form

(1) $y = 3(x-2)^2 + 2$	(3) $y = 3(x+2)^2 - 11$
(2) $y = 3(x-8)^2 + 55$	(4) $y = 3(x-4)^2 + 7$

12. Which equation below represents the graph shown?

Free Response

13. For the function f(x) it is known that (-12, 4) lies on the function. A second function, g(x), is defined by the formula g(x) = f(2x) - 3.

Describe the transformations that occur to the graph of f in order to produce the graph of g.

Based on the fact that the point (-12, 4) lies on f(x), what point must lie on g(x)?

14. The graph of the function f(x) is shown below. The function g(x) is defined by the formula g(x) = -2f(x) for all values of x.

Produce the graph of g on the same grid.

Solve the equation f(x) = g(x) for all values of x.

15. The graph of f(x) is shown below. The function g(x) is defined by $g(x) = 5f\left(\frac{x}{2}\right)$.

Explain the transformations that will transform the graph of f(x) into the graph of g(x) and then produce it on the same grid.

16. Given the parabola $f(x) = -(x-8)^2 + 5$, describe three transformations which would transform the graph of $y = x^2$ into the graph of f(x). Give both the transformations and the order.

17. Describe the difference between the transformations f(-x) and -f(x) on the graph of f(x).

18. Factor the expression below completely.

$$8x^2 + 12x - 8 12x^3 + 20x^2 - 3x - 5 27x^3 - y^3$$

19. Shana believes one of the two binomial factors of $12x^2 + 35x + 8$ is 3x + 2. Is she correct? Explain your answer.

- 20. Find each of the following cube roots without the use of your calculator. Justify your answer based on a multiplication statement.
 - (a) $\sqrt[3]{8}$ (b) $\sqrt[3]{-1}$ (c) $\sqrt[3]{125}$ (d) $\sqrt[3]{0}$

(e) $\sqrt[3]{-8}$ (f) $\sqrt[3]{27}$	(g) $\sqrt[3]{\frac{1}{64}}$ (h)	$\sqrt[3]{-\frac{1}{1000}}$
---------------------------------------	----------------------------------	-----------------------------