Name:

Date:

UNIT #2 – TRANSFORMATIONS OF FUNCTIONS

Part I Questions

- 1. The quadratic function f(x) has a turning point at (5, -8). If g(x) = f(x+7)-3, then at which of the following does g(x) have a turning point? Th
 - (3) (-7, -3)(4) (12, -5)(1)(-2,-11)
 - (2)(12,-11)

The structure of this transformation indicates that
the graph of *f* has been shifted left 7 units due to 7
being added to the input. And then the graph has
been shifted down 3 units due to 3 being subtracted
from the function. Hence:
$$(5, -8) \rightarrow (5-7, -8-3)$$

2. Where does the absolute value function $y = \frac{1}{2}|x-8|+3$ have a turning point? (1)(-4,3)(3)(8,3)

(4)(8, -3)(2)(4, -3)

This function is a shift of 8 right and 3 up of the
more simple function
$$y = \frac{1}{2}|x|$$
, which has a turning
point at $(0, 0)$. Thus, it will have a turning point at
 $(8, 3)$

(1)

- 3. The function f(x) is shown below graphed in solid while the function g(x) is shown dashed. Which of the following equations describes the relationship between the two functions?
 - The graph of f(x) has been both (1) g(x) = f(x) - 6reflected and compressed vertically to produce the graph of g(x). To do this, (2) $g(x) = -\frac{1}{2}f(x)$ (x)one has to multiple the entire function by a negative number between 0 and -1. (3) g(x) = 2f(x)(4) $g(x) = f\left(\frac{1}{2}x\right)$ (2)
- 4. Given that the function $y = x^2 + 6x 27$ has x-intercepts at x = -9 and x = 3, where does the function $y = (3x)^2 + 6(3x) - 27$ have x-intercepts?
 - (3) x = -27 and x = 9(1) $x = \pm 6$
 - (2) x = -12 and x = 0 (4) x = -3 and x = 1

Since
$$x = -9$$
 is an x-intercept
of this function we know:
 $(-9)^2 + 6(-9) - 27 = 0$
But, this allows us to simply
solve the following.
$$3x = -9$$

 $x = -3$
(4)
$$3x = 3$$

 $x = 1$

- 5. If the point (-3, 7) lies on the graph of f(x), then which of the following points must lie on the graph of y = 5f(x) - 20?
 - f(-3) = 7 so: y = 5f(-3) 20 = 5(7) 20 = 35 20(1) (-15, -13) (3) (2, -13)(2) (-3, 15) (4) (1, 25)= 15

- 6. The range of the function f(x) is $-4 \le y \le 10$. If g(x) = -f(x) + 3 then which of the following is the range for g(x)?

 - (1) $-7 \le y \le 7$ (3) $-13 \le y \le 1$ (2) $5 \le y \le 15$ (4) $-3 \le y \le 8$

The structure of g(x) indicates that its graph is a reflection of f(x) in the x-axis followed by an upward shift of 3 units. Thus, the range would be transformed as:

$$\begin{bmatrix} -4, 10 \end{bmatrix} \xrightarrow{r_{x-axis}} \begin{bmatrix} -10, 4 \end{bmatrix} \xrightarrow{T_{0,3}} \begin{bmatrix} -7, 7 \end{bmatrix}$$

(1)

- 7. The trinomial $4x^2 3x 10$ can be written equivalently as
 - (1) (2x-5)(2x+2)(3) (4x+1)(x-10)(3) (4x+1)(x-10)(4) (4x+5)(x-2)Multiply each of the following parameters binomials to see which is equivalent original trinomial. Choice (4) gives: $(4x+5)(x-2) = 4x^2 8x + 5x 10$ $= 4x^2 3x 10$

Multiply each of the following pairs of binomials to see which is equivalent to the

(4)

- 8. The cubic polynomial $3x^3 + 5x^2 + 12x + 20$ can be factored as
 - (1) $(3x+5)(x+2)^2$ (3) (x+5)(3x+2) $= x^{2} (3x+5)+4(3x+5)$ $= (3x+5)(x^{2}+4)$ (2) $(3x+5)(x^2+4)$ (4) (x+5)(x-2)(x+2)(2)

The equation $5x(x-7)^2(3x+2)=0$ has a solution set of 9.

(1)
$$\left\{-5, -\frac{2}{3}, \pm 7\right\}$$
 (3) $\left\{-\frac{2}{3}, 0, 7\right\}$
(3) $\left\{-\frac{2}{3}, 0, 7\right\}$
(4) $\left\{-2, 0, \pm 7\right\}$
(5x = 0
x = 0
(x - 7)² = 0
x - 7 = $\sqrt{0}$
x - 7 = 0
x = 7
(3) $\left\{-\frac{2}{3}, 0, 7\right\}$
(3)

10. The quadratic function $f(x) = 10x^2 + 11x - 6$ has one zero at $x = -\frac{3}{2}$. At which of the following *x*-values is its other zero?

(1)
$$x = 6$$
 (3) $x = \frac{1}{6}$

(2)
$$x = \frac{2}{5}$$
 (4) $x = -4$

Since
$$x = -\frac{3}{2}$$
 is a zero, then $2x + 3$ must be a factor of
this polynomial. But, this means it must factor as:
 $(2x+3)(5x-2)$
Which means its other zero must be $x = \frac{2}{5}$

11. The parabola $y = 3x^2 - 24x + 55$ can be written in the form

(1) $y = 3(x-2)^2 + 2$ (3) $y = 3(x+2)^2 - 11$ (2) $y = 3(x-8)^2 + 55$ (4) $y = 3(x-4)^2 + 7$

$$y = 3(x^{2} - 8x) + 55$$

$$y = 3(x^{2} - 8x + 16) - 3(16) + 55$$

$$y = 3(x - 4)^{2} - 48 + 55$$

$$y = 3(x - 4)^{2} + 7$$

(4)

(2)

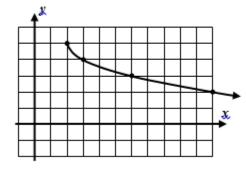
12.

Which equation below represents the graph shown?

(1)
$$y = \sqrt{x-2} - 5$$

(2) $y = -\sqrt{x+2} + 5$
(3) $y = -\sqrt{x-2} + 5$
(4) $y = \sqrt{x+2} + 5$

This graph is a reflection of the graph of $y = \sqrt{x}$ followed by a rightward shift by 2 units and upward shift by 5 units. The new equation is thus: $y = -\sqrt{x-2} + 5$



(3)

Free Response

13. For the function f(x) it is known that (-12, 4) lies on the function. A second function, g(x), is defined by the formula g(x) = f(2x) - 3.

Describe the transformations that occur to the graph of f in order to produce the graph of g.

There are two transformations that occur:1. A horizontal compression by a factor of 2 (or if you prefer a factor of 1/2)2. A vertical shift by 3 units downward.

Based on the fact that the point (-12, 4) lies on f(x), what point must lie on g(x)?

$$(-12,4) \rightarrow \left(\frac{-12}{2},4\right)$$

$$\rightarrow (-6,4)$$

$$(-6,4) \rightarrow (-6,4-3)$$

$$\rightarrow (-6,1)$$
Thus the point (-6,1)
$$g(-6) = f(2 - 6) - 3 = f(-12) - 3$$

$$= 4 - 3 = 1$$
Note that we can verify our answer by evaluating $g(-6)$:

14. The graph of the function f(x) is shown below. The function g(x) is defined by the formula g(x) = -2f(x) for all values of x.

Produce the graph of g on the same grid.

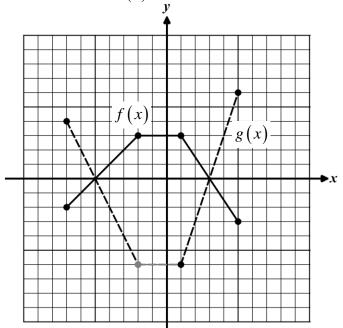
$$(-7, -2) \rightarrow (-7, 4)$$

 $(-2, 3) \rightarrow (-2, -6)$
 $(1, 3) \rightarrow (1, -6)$
 $(5, -3) \rightarrow (5, 6)$

Solve the equation f(x) = g(x) for all values of x.

To solve any equation graphically, simply find the x-values where the outputs (y-values) are the same. In other words, give the *x*-values of the intersection points:

x = -5 and x = 3



15. The graph of f(x) is shown below. The function g(x) is defined by $g(x) = 5f\left(\frac{x}{2}\right)$.

Explain the transformations that will transform the graph of f(x) into the graph of g(x) and then produce it on the same grid.

Two transformations have occurred to *f* in order to produce the graph of g. These can occur in either order:

1. A horizontal stretch by a factor of 2.

2. A vertical stretch by a factor of 5.

$$(-5, -1) \rightarrow (-10, -1) \rightarrow (-10, -5)$$

$$(-3, 1) \rightarrow (-6, 1) \rightarrow (-6, 5)$$

$$(-1, -1) \rightarrow (-2, -1) \rightarrow (-2, -5)$$

$$(5,-5)$$

 $(-1, -1) \rightarrow (-2, -1) \rightarrow (-2, -5)$ $(1, 1) \rightarrow (2, 1) \rightarrow (2, 5)$ $(3, -1) \rightarrow (6, -1) \rightarrow (6, -5)$ $(5, 1) \rightarrow (10, 1) \rightarrow (10, 5)$ 16. Given the parabola $f(x) = -(x-8)^2 + 5$, describe three transformations which would transform the graph of $y = x^2$ into the graph of f(x). Give both the transformations and the order.

	Option #1:	Option #2:
There are multiple orders of	1. A horizontal shift right by 8 units.	1. A reflection in the <i>x</i> -axis.
transformations. We will present two correct options.	2. A reflection in the <i>x</i> -axis.	2. A horizontal shift right by 8 units.
	3. A vertical shift upwards of 5 units.	3. A vertical shift upwards of 5 units.

17. Describe the difference between the transformations f(-x) and -f(x) on the graph of f(x).

The transformation f(-x) will reflect the graph of f(x) in the y-axis.

The transformation $-f(x)$	will reflect the
graph of $f(x)$ in the x-axis.	

18. Factor the expression below completely.

$$8x^{2} + 12x - 8$$

$$= 4(2x^{2} + 3x - 2)$$

$$= 4(2x - 1)(x + 2)$$

$$12x^{3} + 20x^{2} - 3x - 5$$

$$27x^{3} - y^{3}$$

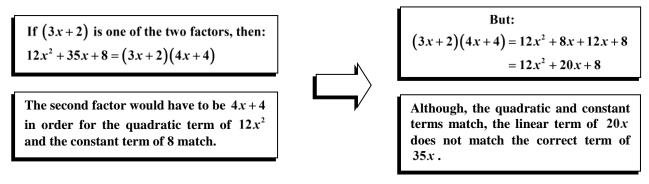
$$= 4x^{2}(3x + 5) - 1(3x + 5)$$

$$= (3x + 5)(4x^{2} - 1)$$

$$= (3x + 5)(2x + 1)(2x - 1)$$

$$(3x - y)(9x^{2} + 3xy + y^{2})$$

19. Shana believes one of the two binomial factors of $12x^2 + 35x + 8$ is 3x + 2. Is she correct? Explain your answer.



20. Find each of the following cube roots without the use of your calculator. Justify your answer based on a multiplication statement.

