Unit 2 - Polynomials and Polynomial Functions 90% of Test

Unit 1–10% of Test

To the best of your ability, identify the degree and describe the roots.

Polynomial Operations – Long Division and Remainder Theorem

3. Use polynomial long division to simplify each of the following ratios. There should be a zero remainder.

(a)
$$\frac{x^2 + 5x - 24}{x - 3}$$
 (b) $\frac{6x^2 + 11x - 10}{3x - 2}$

4. Use polynomial long division to write each of the following ratios in $q(x) + \frac{r}{x-a}$ form, where q(x) is a polynomial and r is the remainder.

(c)
$$\frac{x^2 - 6x + 11}{x - 4}$$
 (d) $\frac{x^2 + 2x - 25}{x + 7}$

5. Is (x + 4) a factor of $x^4 - 6x^3 + 3x^2 + 26x - 24$? How do you know?

6. Which of the following linear expressions is a factor of the cubic polynomial $x^3 + 9x^2 + 16x - 12$?

- (1) x+6 (3) x-3
- (2) x-1 (4) x+2

Polynomials and Linear Factors

Write each expression as a polynomial in standard form.

7. $x(x - 4)^2$

8.
$$(x + 3)(x - 6)(x + 2)$$

Write a polynomial function in standard form with the given zeros. 9. x = -2, 0, 4 10. x = -4, 1, 1

End Behavior of Polynomials

Find the right-hand and left-hand behavior of the graph of the polynomial function.

11.
$$f(x) = -x^4 + 6x^2 + 4$$

12. $f(x) = -x^3 + 3x^2 - 5$

Sketch the general shape of each function.

13.
$$f(x) = (x - 3)(x + 4)(x - 6)^2$$

14.
$$f(x) = (x - 2)(x+4)(x - 3)$$

Polynomial Equations

15 Given the following graph, state the factors and explain your reasoning:

16 Given the following graph, explain what you know about the end behavior and degree:

Create the equation of the cubic, in standard form, that has x-intercepts of -4, 2, and 5 and passes through the point (6, 20). Verify your answer by sketching the cubic's graph on the axes below.

18.

Create an equation for a cubic function, in standard form, that has x-intercepts given by the set $\{-3, 1, 7\}$ and which passes through the point (-2, 54). Sketch your result on the axes shown below.

17.