Unit 2 - Polynomials and Polynomial Functions 90\% of Test

Unit 1-10\% of Test

To the best of your ability, identify the degree and describe the roots.

Degree: \qquad
Total \# of roots: \qquad
\# of real roots: \qquad
\# of imaginary roots: \qquad
Factors: \qquad
2.

Degree: \qquad
Total \# of roots: \qquad
\# of real roots: \qquad
\# of imaginary roots: \qquad
Factors: \qquad

Polynomial Operations - Long Division and Remainder Theorem

3. Use polynomial long division to simplify each of the following ratios. There should be a zero remainder.
(a) $\frac{x^{2}+5 x-24}{x-3}$
(b) $\frac{6 x^{2}+11 x-10}{3 x-2}$
4. Use polynomial long division to write each of the following ratios in $q(x)+\frac{r}{x-a}$ form, where $q(x)$ is a polynomial and r is the remainder.
(c) $\frac{x^{2}-6 x+11}{x-4}$
(d) $\frac{x^{2}+2 x-25}{x+7}$
5. Is $(x+4)$ a factor of $x^{4}-6 x^{3}+3 x^{2}+26 x-24$? How do you know?
6. Which of the following linear expressions is a factor of the cubic polynomial $x^{3}+9 x^{2}+16 x-12$?
(1) $x+6$
(3) $x-3$
(2) $x-1$
(4) $x+2$

Polynomials and Linear Factors

Write each expression as a polynomial in standard form.
7. $x(x-4)^{2}$
8. $(x+3)(x-6)(x+2)$

Write a polynomial function in standard form with the given zeros.
9. $x=-2,0,4$
10. $x=-4,1,1$

End Behavior of Polynomials

Find the right-hand and left-hand behavior of the graph of the polynomial function.
11. $f(x)=-x^{4}+6 x^{2}+4$

Sketch the general shape of each function.
13. $f(x)=(x-3)(x+4)(x-6)^{2}$
14. $f(x)=(x-2)(x+4)(x-3)$

Polynomial Equations

15 Given the following graph, state the factors and explain your reasoning:

16 Given the following graph, explain what you know about the end behavior and degree:

17.

Create the equation of the cubic, in standard form, that has x-intercepts of $-4,2$, and 5 and passes through the point $(6,20)$. Verify your answer by sketching the cubic's graph on the axes below.

18.

Create an equation for a cubic function, in standard form, that has x-intercepts given by the set $\{-3,1,7\}$ and which passes through the point $(-2,54)$. Sketch your result on the axes shown below.

