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5-1 INTEGER EXPONENTS 

MATH III 
 

We just finished our review of linear functions. Linear functions are those that grow by equal differences for 

equal intervals. In this unit we will concentrate on exponential functions which grow by equal factors for equal 

intervals. To understand exponential functions, we first need to understand exponents. 

 

Exercise #1: The following sequence shows powers of 3 by repeatedly multiplying by 3. Fill in the missing 

blanks. 

 

 

 

 

 

 

 

 

 

 

 

This pattern can be duplicated for any base raised to any integer exponent. Because of this we can now define 

positive, negative, and zero exponents in terms of multiplying the number 1 repeatedly or dividing the number 1 

repeatedly. 

   

 

 

 

 

 

 

 

 

 

Exercise #2: Given the exponential function    20 2
x

f x   evaluate each of the following without using your 

calculator. Show the calculations that lead to your final answer. 

 

(a)  2f  (b)  0f    (c)  2f    

 

 

 

 

 

 

(d) When x increases by 3, by what factor does y increase? Explain your answer. 

3 9 

      

              

INTEGER EXPONENT DEFINITIONS 
 

If n is any positive integer then: 
 

1.   2.   3.  

 

 n-times  n-times 



 

There are many basic exponent properties or laws that are critically important and that can be investigated using 

integer exponent examples. Two of the very important ones we will see next. 

 

Exercise #3: For each of the following, write the product as a single exponential expression. Write (a) and (b) as 

extended products first (if necessary). 

 

(a) 3 42 2  (b) 6 22 2  (c) 2 2m n  

 

 

 

 

It's clear why the exponent law that you generalized in part (c) works for positive integer exponents. But, does it 

also make sense within the context of our negative exponents? 

 

Exercise #4: Consider now the product 3 12 2 . 

 

 

 

 

 

 

 

(c) Do your answers from (a) and (b) support the extension of the Addition Property of Exponents to negative 

powers as well? Explain. 

 

 

 

Let's look at another important exponent property. 

 

Exercise #5: For each of the following, write the exponential expression in the form 3x
. Write (a) and (b) as 

extended products first (if necessary). 

 

(a)  
3

23  (b)  
2

43  (c)  3
n

m  

 

 

 

Again, let's look at how the Product Property of Exponents still holds for negative exponents. 

 

Exercise #6: Consider the expression  
4

23 . Show this expression is equivalent to 
83
 by first rewriting 

23
 in 

fraction form. 

(a) Use the exponent law found in Exercise 3(c) to 

write this as a single exponential expression. 
(b) Evaluate 3 12 2  by first rewriting 32  and 12  

and then simplifying. 



Name: ____________________________________ Date: __________________ 

 

RATIONAL EXPONENTS 

MATH III 
 

When you first learned about exponents, they were always positive integers, and just represented repeated 

multiplication. And then we had to go and introduce negative exponents, which really just represent repeated 

division. Today we will introduce rational (or fractional) exponents and extend your exponential knowledge 

that much further. 

 

Exercise #1: Recall the Product Property of Exponents and use it to rewrite each of the following as a simplified 

exponential expression. There is no need to find a final numerical value. 

 

(a)  
4

32   (b)  
5

25  (c)  
0

73  (d)   
2

2
24



 

 

 

 

We will now use the Product Property to extend our understanding of exponents to include unit fraction 

exponents (those of the form 1
n

 where n is a positive integer). 

 

Exercise #2: Consider the expression 
1

216 . 

 

 

 

 

 

 

 

 

 

This is remarkable! An exponent of 1
2

 is equivalent to a square root of a number!!! 

 

Exercise #3: Test the equivalence of the 1
2

 exponent to the square root by using your calculator to evaluate each 

of the following. Be careful in how you enter each expression. 

 

(a) 
1

225    (b) 
1

281     (c) 
1

2100   

 

 

We can extend this now to all levels of roots, that is square roots, cubic roots, fourth roots, etcetera. 

 

 

 

 

 

(a) Apply the Product Property to simplify  
2

1
216

. What other number squared yields 16? 

(b) You can now say that 
1

216  is equivalent to what 

more familiar quantity? 

UNIT FRACTION EXPONENTS 

 

For n given as a positive integer:    



 

Exercise #4: Rewrite each of the following using roots instead of fractional exponents. Then, if necessary, 

evaluate using your calculator to guess and check to find the roots (don't use the generic root function). Check 

with your calculator. 

 

(a) 
1

3125   (b) 
1

416  (c) 
1

29


 (d) 
1

532


 

 

 

 

 

 

 

 

 

We can now combine traditional integer powers with unit fractions in order interpret any exponent that is a 

rational number, i.e. the ratio of two integers. The next exercise will illustrate the thinking. Remember, we 

want our exponent properties to be consistent with the structure of the expression. 

 

Exercise #5: Let's think about the expression 
3

24 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise #6: Evaluate each of the following exponential expressions involving rational exponents without the use 

of your calculator. Show your work. Then, check your final answers with the calculator. 

 

(a) 
3

416   (b) 
3

225    (c)
2

38


  

 

 

 

 

 

(a) Fill in the missing blank and then evaluate this 

expression: 

   
3 1

2 24   

(b) Fill in the missing blank and then evaluate this 

expression:  

   
3 3

24   

(c) Verify both (a) and (b) using your calculator. (d) Evaluate 
2

327  without your calculator. Show 

your thinking. Verify with your calculator. 

RATIONAL EXPONENT CONNECTION TO ROOTS 

 

For the rational number  we define  to be:     or  . 



 

 

5- 2 EXPONENTIAL FUNCTION BASICS 

MATH III 
 

You studied exponential functions extensively in Common Core Algebra I. Today's lesson will review many of 

the basic components of their graphs and behavior. Exponential functions, those whose exponents are variable, 

are extremely important in mathematics, science, and engineering. 

 

 

 

 

 

Exercise #1:  Consider the function 2xy  .  Fill in the table below without using your calculator and then sketch 

the graph on the grid provided. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise #2:  Now consider the function  1
2

x

y  .  Using your calculator to help you, fill out the table below 

and sketch the graph on the axes provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BASIC EXPONENTIAL FUNCTIONS 
 

 where  

x 2xy   

3   

2   

1   

0  

1  

2  

3  

 

y 

x 

x  1
2

x

y   

3   

2   

1   

0  

1  

2  

3  

 

y 

x 



 

Exercise #3:  Based on the graphs and behavior you saw in Exercises #1 and #2, state the domain and range for 

an exponential function of the form xy b . 

 

 Domain (input set):  Range (output set): 

 

 

 

 

Exercise #4:  Are exponential functions one-to-one? How can you tell? What does this tell you about their 

inverses? 

 

 

 

 

Exercise #5:  Now consider the function  7 3
x

y  . 
 

(a) Determine the y-intercept of this function algebraically.  

Justify your answer. 

 

 

 

(b) Does the exponential function increase or decrease?  

Explain your choice. 

 

 

 

(c) Create a rough sketch of this function, labeling its y-

intercept. 

 

 

Exercise #6:  Consider the function  1 4
3

x

y   . 

 

(a) How does this function’s graph compare to that of 

 1
3

x

y  ? What does adding 4 do to a function's graph? 

 

 

(b) Determine this graph’s y-intercept algebraically.  Justify 

your answer. 

 

 

 

(c) Create a rough sketch of this function, labeling its y-

intercept. 

 

 

 

 

y 

x 

y 

x 



 

 

5-3 THE METHOD OF COMMON BASES 

MATH III 
 

There are very few algebraic techniques that do not involve technology to solve equations that contain 

exponential expressions. In this lesson we will look at one of the few, known as The Method of Common 

Bases. 

 

Exercise #1:  Solve each of the following simple exponential equations by writing each side of the equation using 

a common base. 
 

(a) 2 16x   (b) 3 27x   (c) 
1

5
25

x   (d) 16 4x   

 

 

 

 

 

 

In each of these cases, even the last, more challenging one, we could manipulate the right-hand side of the equation 

so that it shared a common base with the left-hand side of the equation.  We can exploit this fact by manipulating 

both sides so that they have a common base.  First, though, we need to review an exponent law. 
 

Exercise #2:  Simplify each of the following exponential expressions. 
 

(a)  32
x

  (b)  
4

23
x

 (c)  
3 7

15
x


 (d)  

21
34

x
  

 

 

 

 

Exercise #3:  Solve each of the following equations by finding a common base for each side. 
 

(a) 8 32x   (b) 
2 19 27x   (c)  

4
1125

25

x
x



  

 

 

 

 

 

 

 

Exercise #4:  Which of the following represents the solution set to the equation 
2 32 64x   ? 

 

 (1)  3  (3)  11  

 

 (2)  0, 3  (4)  35  



 

This technique can be used in any situation where all bases involved can be written with a common base. In a 

practical sense, this is rather rare. Yet, these types of algebraic manipulations help us see the structure in 

exponential expressions. Try to tackle the next, more challenging, problem. 

 

Exercise #5:  Two exponential curves, 
5

24
x

y


  and 

2 1
1

2

x

y



 
  
 

 are shown below. They intersect at point A. A 

rectangle has one vertex at the origin and the other at A as shown. We want to find its area. 

 

(a) Fundamentally, what do we need to know about 

a rectangle to find its area? 

 

 

 

 

(b) How would knowing the coordinates of point A 

help us find the area? 

 

 

 

 

 

 

 

(c) Find the area of the rectangle algebraically using the Method of Common Bases. Show your work carefully. 

 

 

 

 

 

 

 

 

 

Exercise #6: At what x coordinate will the graph of 25x ay   intersect the graph of 

3 1
1

125

x

y



 
  
 

? Show the 

work that leads to your choice. 

 

(1) 
5 1

3

a
x


   (3) 

2 1

5

a
x

 
  

 

(2) 
2 3

11

a
x


   (4) 

5 3

2

a
x


  

 

 

 

 

 

y 

x 

 

  

A 

  



 

 

5-4 EXPONENTIAL MODELING WITH PERCENT GROWTH AND DECAY 

MATH III 
 

Exponential functions are very important in modeling a variety of real world phenomena because certain things 

either increase or decrease by fixed percentages over given units of time. You looked at this in Common Core 

Algebra I and in this lesson we will review much of what you saw. 

 

Exercise #1:  Suppose that you deposit money into a savings account that receives 5% interest per year on the 

amount of money that is in the account for that year.  Assume that you deposit $400 into the account initially. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The thinking process from Exercise #1 can be generalized to any situation where a quantity is increased by a fixed 

percentage over a fixed interval of time.  This pattern is summarized below: 
 

 

 

 

 

 

 

 

 

 

Exercise #2:  Which of the following gives the savings S in an account if $250 was invested at an interest rate of 

3% per year? 
 

 (1)  250 4
t

S   (3)  1.03 250
t

S    
 

 (2)  250 1.03
t

S   (4)  250 1.3
t

S   

 

INCREASING EXPONENTIAL MODELS 
 

If quantity Q is known to increase by a fixed percentage p, in decimal form, then Q can be modeled by 
 

 
 

where  represents the amount of Q present at  and t represents time. 

(a) How much will the savings account increase by 

over the course of the year? 

(b) How much money is in the account at the end of 

the year? 

(c) By what single number could you have 

multiplied the $400 by in order to calculate your 

answer in part (b)? 

(d) Using your answer from part (c), determine the 

amount of money in the account after 2 and 10 

years.  Round all answers to the nearest cent 

when needed. 

(e) Give an equation for the amount in the savings 

account  as a function of the number of 

years since the $400 was invested. 

(f) Using a table on your calculator determine, to the 

nearest year, how long it will take for the initial 

investment of $400 to double.  Provide evidence 

to support your answer. 



 

Decreasing exponentials are developed in the same way, but have the percent subtracted, rather than added, to the 

base of 100%. Just remember, you are ultimately multiplying by the percent of the original that you will have 

after the time period elapses. 

 

Exercise #3: State the multiplier (base) you would need to multiply by in order to decrease a quantity by the given 

percent listed. 

 

(a) 10% (b) 2% (c) 25% (d) 0.5% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise #4:  If the population of a town is decreasing by 4% per year and started with 12,500 residents, which 

of the following is its projected population in 10 years? Show the exponential model you use to solve this problem. 

 

 (1) 9,230 (3) 18,503 

 

 (2) 76 (4) 8,310 

 

 

 

Exercise #5:  The stock price of WindpowerInc is increasing at a rate of 4% per week.  Its initial value was $20 

per share.  On the other hand, the stock price in GerbilEnergy is crashing (losing value) at a rate of 11% per week.  

If its price was $120 per share when Windpower was at $20, after how many weeks will the stock prices be the 

same?  Model both stock prices using exponential functions. Then, find when the stock prices will be equal 

graphically. Draw a well labeled graph to justify your solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECREASING EXPONENTIAL MODELS 
 

If quantity Q is known to decrease by a fixed percentage p, in decimal form, then Q can be modeled by 
 

 
 

where  represents the amount of Q present at  and t represents time. 



 

 

5-5 INTRODUCTION TO LOGARITHMS 

MATH III 
 

Exponential functions are of such importance to mathematics that their inverses, functions that “reverse” their 

action, are important themselves.  These functions, known as logarithms, will be introduced in this lesson. 

 

Exercise #1:  The function   2xf x   is shown graphed on the axes 

below along with its table of values. 

 

 

 

 

 

(a) Is this function one-to-one?  Explain your answer. 

 

 

 

(b) Based on your answer from part (a), what must be 

true about the inverse of this function? 

 

 

 

 

(c) Create a table of values below for the inverse of 

  2xf x   and plot this graph on the axes given. 

 

 

 

 

 

 

(d) What would be the first step to find an equation for this inverse algebraically?  Write this step down and then 

stop. 

 

 

 

 

Defining Logarithmic Functions – The function logby x  is the name we give the inverse of 
xy b .  For 

example, 2logy x  is the inverse of 2xy  .  Based on Exercise #1(d), we can write an equivalent exponential 

equation for each logarithm as follows: 

 

log   is the same as  y

by x b x   

 

Based on this, we see that a logarithm gives as its output (y-value) the exponent we must raise b to in order to 

produce its input (x-value). 

x 3  2  1  0 1 2 3 

  2xf x   1
8

 1
4

 1
2

 1 2 4 8 

 

x        

 1f x         

 

y 

x 

 
Notice that, as always, the graphs 

of  and  are 

symmetric across  

 



 

Exercise #2:  Evaluate the following logarithms.  If needed, write an equivalent exponential equation.  Do as 

many as possible without the use of your calculator. 
 

(a) 2log 8  (b) 
4log 16  (c) 5log 625  (d) 

10log 100,000  

 

 

 

 

 

(e)  6
1log

36
 (f)  2

1log
16

 (g) 5log 5  (h) 5

3log 9  

 

 

 

 

 

It is critically important to understand that logarithms give exponents as their outputs.  We will be working for 

multiple lessons on logarithms and a basic understanding of their inputs and outputs is critical. 

 

Exercise #3:  If the function  2log 8 9y x    was graphed in the coordinate plane, which of the following 

would represent its y-intercept? 

 

 (1) 12 (3) 8 

 

 (2) 13 (4) 9 

 

 

Exercise #4:  Between which two consecutive integers must 
3log 40  lie? 

 

 (1) 1 and 2 (3) 3 and 4 

 

 (2) 2 and 3 (4) 4 and 5 

 

 

 

Calculator Use and Logarithms – Most calculators only have two logarithms that they can evaluate directly.  One 

of them, 10log x , is so common that it is actually called the common log and typically is written without the base 

10. 

10log logx x   (The Common Log) 
 

Exercise #5:  Evaluate each of the following using your calculator. 
 

(a) log100  (b)  1log
1000

 (c) log 10  

 

 

 

 

 



 

 

5-6 GRAPHS OF LOGARITHMS 

MATH III 
 

The vast majority of logarithms that are used in the real world have bases greater than one; the pH scale that we 

saw on the last homework assignment is a good example.  In this lesson we will further explore graphs of these 

logarithms, including their construction, transformations, and domains and ranges. 

 

Exercise #1:  Consider the logarithmic function 3logy x  and its inverse 3xy  . 

 

(a) Construct a table of values for 3xy   and then use this to 

construct a table of values for the function 3logy x . 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Graph 3xy   and 3logy x  on the grid given.  Label with equations. 

 

(c) State the natural domain and range of 
33  and logxy y x  . 

 

 

 

 

 

 

 

Exercise #2:  Using your calculator, sketch the graph of 
10logy x  on the axes below.  Label the x-intercept.  

State the domain and range of 
10logy x . 

 

Domain: 

 

 

Range: 

 

 

x 2  1  0 1 2 

3xy        

 

x      

3logy x       

 

3xy   
 

Domain: 

 

Range: 

3log xy   
 

Domain: 

 

Range: 

y 

x 

2 

10 

 

y 

x 



 

Exercise #3:  Which of the following equations describes the graph shown below? Show or explain how you 

made your choice. 

 

 (1)  3log 2 1y x    

 

 (2)  2log 3 1y x    

 

 (3)  2log 3 1y x    

 

 (4)  3log 3 1y x    

 

 

The fact that finding the logarithm of a non-positive number (negative or zero) is not possible in the real number 

system allows us to find the domains of a variety of logarithmic functions. 

 

Exercise #4:  Determine the domain of the function  2log 3 4y x  .  State your answer in set-builder notation. 

 

 

 

 

 

 

All logarithms with bases larger than 1 are always increasing. This increasing nature can be seen by calculating 

their average rate of change. 

 

Exercise #5: Consider the common log, or log base 10,    logf x x . 

 

(a) Set up and evaluate an expression for the average rate of change 

of  f x  over the interval 1 10x   

 

 

 

 

(b) Set up and evaluate an expression for the average rate of change 

of  f x  over the interval 1 100x  . 

 

 

 

(c) What do these two answers tell you about the changing slope of this function? 

 

 

 

 

 

 

y 

x 

y 

x 



 

 

5-7 LOGARITHM LAWS 

MATH III 
 

Logarithms have properties, just as exponents do, that are important to learn because they allow us to solve a 

variety of problems where logarithms are involved.  Keep in mind that since logarithms give exponents, the laws 

that govern them should be similar to those that govern exponents.  Below is a summary of these laws. 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise #1:  Which of the following is equal to  3log 9x ? 
 

 (1) 
3 3log 2 log x  (3)

32 log x  
 

 (2) 32 log x  (4) 
3log 2x  

 

Exercise #2:  The expression  2

log
1000

x  can be written in equivalent form as 

 

 (1) 2log 3x   (3) 2log 6x  
 

 (2) log 2 3x   (4) log 2 6x   

 

 

Exercise #3:  If log3 and log 2a b   then which of the following correctly expresses the value of log12  in 

terms of a and b? 

 

 (1) 2a b  (3) 2a b  
 

 (2) 2a b  (4) 2a b  

 

Exercise #4:  Which of the following is equivalent to 52log x
y

 
 
 

? 

 

 (1) 2 2log 5logx y  (3) 
2 2

1
log 5log

2
x y  

 

 (2) 2 22log 5logx y  (4) 2 22log 5logx y  

 

EXPONENT AND LOGARITHM LAWS 
 

LAW EXPONENT VERSION LOGARITHM VERSION 

Product x y x yb b b     log log logb b bx y x y    

Quotient 
x

x y

y

b
b

b

  log log logb b b

x
x y

y

 
  

 
 

Power  
y

x x yb b    log logy

b bx y x   

 



 

Exercise #5:  The value of 
3

5log
27

 
 
 

 is equal to 

 

 (1) 3log 5 6

2


 (3) 3log 5 3

2


 

 

 (2) 
32log 5 3  (4) 

32log 5 3  
 

Exercise #6:  If    logf x x  and   3100g x x  then   f g x   

 

 (1) 100log x  (3) 300log x  

 

 (2) 6 log x  (4) 2 3log x  

 

Exercise #7:  The logarithmic expression 
7

2log 32x  can be rewritten as 

 

 (1) 2log 35x  (3) 25 7 log x  

 

 (2) 25 7log

2

x
 (4) 235 log

2

x
 

 

 

Exercise #8:  If log 7 k  then  log 4900  can be written in terms of k as 

 

 (1)  2 1k   (3)  2 3k   

 

 (2) 2 1k   (4) 2 1k   

 

The logarithm laws are important for future study in mathematics and science. Being fluent with them is essential. 

Arguably, the most important of the three laws is the power law. In the next exercise, we will examine it more 

closely. 

 

Exercise #9: Consider the expression  2log 8x
. 

 

 

 

(c) Show that  2log 8 3x x  by rewriting 38 as 2 . 

 

 

 

 

 

(a) Using the third logarithm law (the Product Law), 

rewrite this as equivalent product and simplify. 

(b) Test the equivalency of these two expressions for 

0,1,  and 2x  . 



 

 

5-8 SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS 

MATH III 
 

Earlier in this unit, we used the Method of Common Bases to solve exponential equations.  This technique is 

quite limited, however, because it requires the two sides of the equation to be expressed using the same base.  A 

more general method utilizes our calculators and the third logarithm law: 

 

 

 

 
 

 

Exercise #1:  Solve:  4 8x   using (a) common bases and (b) the logarithm law shown above. 
 

(a) Method of Common Bases (b) Logarithm Approach 

 

 

 

 

 

 

The beauty of this logarithm law is that it removes the variable from the exponent.  This law, in combination with 

the logarithm base 10, the common log, allows us to solve almost any exponential equation using calculator 

technology. 

 

Exercise #2:  Solve each of the following equations for the value of x.  Round your answers to the nearest 

hundredth. 
 

(a) 5 18x   (b) 4 100x   (c) 2 1560x   

 

 

 

 

 

These equations can become more complicated, but each and every time we will use the logarithm law to 

transform an exponential equation into one that is more familiar (linear only for now) 

 

Exercise #3:  Solve each of the following equations for x.  Round your answers to the nearest hundredth. 
 

(a) 
36 50x   (b)  

5
21.03 2
x

  

THE THIRD LOGARITHM LAW 
 

 



 

Now that we are familiar with this method, we can revisit some of our exponential models from earlier in the unit.  

Recall that for an exponential function that is growing: 

 

 

 

 

 

 
 

 

Exercise #4:  A biologist is modeling the population of bats on a tropical island.  When he first starts observing 

them, there are 104 bats.  The biologist believes that the bat population is growing at a rate of 3% per year. 

 

 

 

 

 

 

 

 

 

 
Exercise #5:  A stock has been declining in price at a steady pace of 5% per week.  If the stock started at a price 

of $22.50 per share, determine algebraically the number of weeks it will take for the price to reach $10.00.  Round 

your answer to the nearest week. 

 

 

 

 

 

 

 

As a final discussion, we return to evaluating logarithms using our calculator. Many modern calculators can find 

a logarithm of any base. Some still only have the common log (base 10) and another that we will soon see. But, 

we can still express our answers in terms of logarithms. 
 

Exercise #6:  Find the solution to each of the following exponential equations in terms of a logarithm with the 

same base as the exponential equation. 

 

 

 

 

 

 

 

 

 

 

 

 

If quantity Q is known to increase by a fixed percentage p, in decimal form, then Q can be modeled by 
 

 
 

where  represents the amount of Q present at  and t represents time. 

(a) Write an equation for the number of bats, , 

as a function of the number of years, t, since the 

biologist started observing them. 

(b) Using your equation from part (a), algebraically 

determine the number of years it will take for the 

bat population to reach 200.  Round your answer 

to the nearest year. 

(a)  4 2 3 17
x
    (b)   317 5 4

x

   



 

 

5- 9 THE NUMBER e AND THE NATURAL LOGARITHM 

MATH III 
 

There are many numbers in mathematics that are more important than others because they find so many uses in 

either mathematics or science.  Good examples of important numbers are 0, 1, i, and  .  In this lesson you will 

be introduced to an important number given the letter e for its “inventor” Leonhard Euler (1707-1783).  This 

number plays a crucial role in Calculus and more generally in modeling exponential phenomena. 

 

 

 

 

 

Exercise #1:  Which of the graphs below shows xy e ?  Explain your choice.  Check on your calculator. 

 

(1)   (2) (3) (4) 

 

 

 

 

 

 

 

 

 

Explanation: 

 

 

 

 

Very often e is involved in exponential modeling of both increasing and decreasing quantities.  The creation of 

these models is beyond the scope of this course, but we can still work with them. 

 

Exercise #2:  A population of llamas on a tropical island can be modeled by the equation 0.035500 tP e , where t 

represents the number of years since the llamas were first introduced to the island. 

 

 

 

 

 

 

 

 

 

 

 

THE NUMBER e 
 

1. Like , e is irrational. 2.  e  3. Used in Exponential Modeling 

y 

x 

y 

x 

y 

x 

y 

x 

(a) How many llamas were initially introduced at 

0t  ?  Show the calculation that leads to your 

answer. 

(b) Algebraically determine the number of years for 

the population to reach 600.  Round your answer 

to the nearest tenth of a year. 



 

Because of the importance of xy e , its inverse, known as the natural logarithm, is also important. 

 

 

 

 

 

The natural logarithm, like all logarithms, gives an exponent as its output.  In fact, it gives the power that we must 

raise e to in order to get the input. 

 

Exercise #3:  Without the use of your calculator, determine the values of each of the following. 
 

(a)  ln e  (b)  ln 1  (c)  5ln e  (d) ln e  

 

 

 

The natural logarithm follows the three basic logarithm laws that all logarithms follow.  The following problems 

give additional practice with these laws. 

 

Exercise #4:  Which of the following is equivalent to 
3

2
ln

x

e

 
 
 

? 

 

 (1) ln 6x   (3) 3ln 6x   
 

 (2) 3ln 2x   (4) ln 9x   

 

Exercise #5:  A hot liquid is cooling in a room whose temperature is constant. Its temperature can be modeled 

using the exponential function shown below. The temperature, T, is in degrees Fahrenheit and is a function of the 

number of minutes, m, it has been cooling. 
 

  0.03101 67mT m e   

 

 

 

 

 

 

 

 

 

THE NATURAL LOGARITHM 
 

The inverse of :        

(a) What was the initial temperature of the water at 

0m  . Do without using your calculator. 

(b) How do you interpret the statement that  

 60 83.7T  ? 

(c) Using the natural logarithm, determine 

algebraically when the temperature of the liquid 

will reach 100 Fo . Show the steps in your 

solution. Round to the nearest tenth of a minute. 

(d) On average, how many degrees are lost per 

minute over the interval 10 30m  ? Round to 

the nearest tenth of a degree. 



 

 

5-10 COMPOUND INTEREST 

MATH III 
 

In the worlds of investment and debt, interest is added onto a principal in what is known as compound interest. 

The percent rate is typically given on a yearly basis, but could be applied more than once a year. This is known 

as the compounding frequency. Let's take a look at a typical problem to understand how the compounding 

frequency changes how interest is applied. 

 

Exercise #1: A person invests $500 in an account that 

earns a nominal yearly interest rate of 4%. 

 

 

 

So, the pattern is fairly straightforward. For a shorter compounding period, we get to apply the interest more 

often, but at a lower rate. 

 

Exercise #2: How much would $1000 invested at a nominal 2% yearly rate, compounded monthly, be worth in 

20 years? Show the calculations that lead to your answer. 

 

(1) $1485.95 (3) $1033.87 

 

(2) $1491.33 (4) $1045.32 

 

This pattern is formalized in a classic formula from economics that we will look at in the next exercise. 

 

Exercise #3: For an investment with the following parameters, write a formula for the amount the investment is 

worth, A, after t-years. 

 

 P = amount initially invested 

  

 r = nominal yearly rate 

  

 n = number of compounds per year 

 

 

(a) How much would this investment be worth in 10 

years if the compounding frequency was once 

per year? Show the calculation you use. 

(b) If, on the other hand, the interest was applied four 

times per year (known as quarterly 

compounding), why would it not make sense to 

multiply by 1.04 each quarter? 

(c) If you were told that an investment earned 4% per 

year, how much would you assume was earned 

per quarter? Why? 

(d) Using your answer from part (c), calculate how 

much the investment would be worth after 10 

years of quarterly compounding? Show your 

calculation. 

 

  



 

The rate in Exercise #1 was referred to as nominal (in name only). It's known as this, because you effectively 

earn more than this rate if the compounding period is more than once per year. Because of this, bankers refer to 

the effective rate, or the rate you would receive if compounded just once per year. Let's investigate this. 

 

Exercise #4: An investment with a nominal rate of 5% is compounded at different frequencies. Give the effective 

yearly rate, accurate to two decimal places, for each of the following compounding frequencies. Show your 

calculation. 

 

(a) Quarterly (b) Monthly (c) Daily 

 

 

 

 

 

 

 

 

 

We could compound at smaller and smaller frequency intervals, eventually compounding all moments of time. In 

our formula from Exercise #3, we would be letting n approach infinity. Interestingly enough, this gives rise to 

continuous compounding and the use of the natural base e in the famous continuous compound interest 

formula. 

 

 

 

 

 

 

 

 

Exercise #5: A person invests $350 in a bank account that promises a nominal rate of 2% continuously 

compounded. 

 

 

 

 

CONTINUOUS COMPOUND INTEREST 
 

For an initial principal, P, compounded continuously at a nominal yearly rate of r, the investment would be 

worth an amount A given by: 

 

(a) Write an equation for the amount this investment 

would be worth after t-years. 

(b) How much would the investment be worth after 

20 years? 

(c) Algebraically determine the time it will take for 

the investment to reach $400. Round to the 

nearest tenth of a year. 

(d) What is the effective annual rate for this 

investment? Round to the nearest hundredth of a 

percent. 


